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Abstract In this paper, a pre-compressed one-

dimensional granular crystal model is studied. The

bright analytic single and multiple solitary wave

solutions in more general forms than those obtained

the KdV system in the previous studies are derived by

using the homogeneous balance principle and Hirota’s

bilinear method. The difference between the present

solutions and those from the KdV system are inves-

tigated both analytically and numerically. By analyz-

ing the dispersion relation and the collision process of

solitary waves, we find that there are two types of

double-solitary waves in the pre-compressed granular

crystal model. The geometric and numerical analysis

of dynamic behaviors of the solutions is presented

with emphasis on the relation between the double-

solitary waves and elastic collision between single-

solitary waves. We find that the opposite collision

between single-solitary waves may be stable and thus

generate a stable double-solitary wave. It is concluded

that the collision is a special stable double-solitary

wave solution. We further propose a possible way to

determine the stability of multiple solitary waves

qualitatively. The results of this paper provide a

theoretical basis for finding stable multiple solitary

wave solutions.

Keywords Nonlinear waves � Multiple solitary

waves � Stability � Granular crystal

1 Introduction

One distinguishing feature of wave propagation in a

linear periodic structure (also termed phononic crys-

tal) is the appearance of ‘‘stop bands’’ [1, 2], which can

be used to control the propagation of waves. These

stop bands allow phononic crystals to serve as

mechanical filters [3], waveguides [4, 5], diodes

[6–9] and resonators [10]. Although we have found a

lot of interesting phenomena and extensive applica-

tions in linear phononic crystals, nonlinear phononic

crystals have attracted much attention in recent years

due to their tunable phononic characteristics [11].

Moreover, nonlinear phononic crystals have some

phenomena that linear phononic crystals do not have,

such as solitons [12–14] and second harmonic [15].
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Elastic wave interaction with nonlinear phononic

crystals yields some fascinating phenomena, among

which solitary waves phenomena have been studied

most intensively, namely discrete breathers [16–19],

highly nonlinear solitary waves [20–22]. They feature

unique properties as well as potential for applications,

e.g., novel granular protection systems [23] and

nonlinear phononic crystal waveguide [24, 25].

The simplest case of nonlinear phononic crystals is

one-dimensional granular chain of mass [26]. The

Fermi–Pasta–Ulam (FPU) problem was proposed

from such nonlinear systems by Fermi et al. [27].

Later, the Korteweg-de Vries (KdV) equation [28] was

derived from the FPU lattice. The soliton solution for

the KdV equation explains the FPU problem under

certain conditions. There are not only single solitons

but also multiple solitons in KdV equation, which

makes it very important in describing the dynamic

behavior of weakly nonlinear systems. It should be

noted that in the long wavelength approximation, the

discrete system (e.g., the granular chains) can be

described by KdV (or m-KdV) equation [26]. The FPU

chain is a model for nearest neighbor coupled with

harmonic plus cubic (or quartic) nonlinear interac-

tions. The long wavelength approximation gives rise

to a Boussinesq equation or a nonlinear Schrodinger

(NLS) equation which admit soliton solutions. Certain

studies have also employed this approximation [29].

Granular crystals consisting of tightly packed

aggregates of particles in a periodic arrangement have

evinced special interest due to their tunable nonlinear

[26]. It is shown that the interactions between spheres

are highly nonlinear under weak pre-compression but

are weakly nonlinear under higher pre-compression.

Recently, these nonlinear systems have been studied

extensively as they can be used as an ideal experi-

mental platform for the study of interplay between

discrete and continuum systems. There are a lot of

mathematical methods for studying wave phenomena

in nonlinear continuous systems, such as the pertur-

bation techniques [30, 31]. However, discrete nonlin-

ear systems have received little attention. Due to the

complexity of discrete systems, the research methods

are mostly focused on numerical simulation. And the

study of discrete systems based on analytical solutions

is very few.

In this paper, the continuous equation correspond-

ing to the discrete granular system, namely Boussinesq

equation [29], is studied by solving the equation

analytically. Then, the analytical solution is used as

the initial signal to study the dynamic behavior and

stability of the solution of the original discrete

granular system. In Ref. [32], a continuous equation

(Eq. (2.3) in Ref. [32], which belongs to Boussinesq

equation [29]) in the original system without coordi-

nate transformation was obtained in an initially

compressed chain of granular spheres. In Ref. [33],

we obtained the exact analytical single-solitary wave

solution from this continuous equation (Eq. (6) in Ref.

[33]). However, only approximate analytical solutions

of multiple solitary waves were constructed without

rigorous mathematical derivation. Moreover, there are

some restrictions on the solutions, e.g., they do not

hold when the wavenumbers of arbitrary two single-

solitary waves are opposite. In order to resolve the

above problems, the bilinear method and homoge-

neous balance principle are suggested to solve the

continuous equation directly. Based on the obtained

analytical solutions, the dynamic behavior and stabil-

ity of the double-solitary wave are studied in detail.

2 Continuous equation and analytical solutions

Consider a granular chain of identical spheres with

mass m pre-compressed by a static load F0, see Fig. 1

where ~d0 is the compression under the preset static

load.

The governing equation for a monatomic granular

chain of spherical particles under the pre-compression
~d0 can be written as [32]

€~ui ¼ Að~d0 � ~ui þ ~ui�1Þ3=2 � Að~d0 � ~uiþ1 þ ~uiÞ3=2;

ð1Þ

where ~ui indicates the displacements of the ith spheres

with the superscripted dot denoting the derivation w.r.t

time ~t, and the Hertzian constant A ¼ Eð2 ~RÞ1=2

3mð1�t2
mÞ

[32]

with ~R, m, E and tm being the radius, mass, Young’s

modulus and Poisson’s ratio of the spheres,

respectively.

For convenience of discussion, we deal with the

governing Eq. (1) in the dimensionless form. To this

end, we set L to be a given characteristic length scale

and introduce the following dimensionless variables:
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un ¼ ~un=L; t ¼ ~t
ffiffiffiffiffiffiffiffiffiffiffi

L1=2A
p

; ð2Þ

and three dimensionless parameters

d0 ¼ ~d0=L; R ¼ ~R=L: ð3Þ

Then Eq. (1) can be transformed into the following

dimensionless equation in terms of the dimensionless

variables and parameters:

€ui ¼ ðd0 � ui þ ui�1Þ3=2 � ðd0 � uiþ1 þ uiÞ3=2: ð4Þ

It should be indicated that the superscripted dot in

the above equation represents the derivation w.r.t the

dimensionless time t.

Using the long-wave approximation [32], we can

write Eq. (4) in a continuous form:

utt � c2
0uxx � 2c0cuxxxx þ euxuxx ¼ 0; ð5Þ

where c2
0 ¼ 6R2d1=2

0 ; c ¼ c0R
2=6; e ¼ c2

0R=d0; and x is

the dimensionless special coordinate.

Equation (5) belongs to Boussinesq equation [29]

and can be solved by using the homogeneous balance

principle [35–38]. To this end, we can assume that the

derivation of the solution to Eq. (5) w.r.t x is

u ¼ �A1

oðln f Þ
ox

; v ¼ ou

ox
; A1 ¼ 24c0c

e
: ð6Þ

Substituting Eq. (6) into Eq. (5), we can obtain

�A1ðln f Þ;xtt þ c2
0A1ðln f Þ;xxx þ 2c0cA1ðln f Þ;xxxxx

þ eA2
1ðln f Þ;xxðln f Þ;xxx

¼ 0: ð7Þ

To reduce the calculation, we integrate Eq. (7) w.r.t x

by setting the integral constant to be zero and then

have

ðln f Þ;tt � c2
0ðln f Þ;xx � 2c0cðln f Þ;xxxx

� A1e
2

ðln f Þ;xx
h i2

¼ 0: ð8Þ

Considering the following relations:

o2ðlnf Þ
ot2

¼ 1

f 2
� f;t
� �2þff;tt

h i

;

o2ðlnf Þ
ox2

¼ 1

f 2
� f;x
� �2þff;xx

h i

;

o4ðlnf Þ
ox4

¼ 1

f 4
�3f 2 f;xx

� �2�4f 2f;xf;xxxþ12f f;x
� �2

f;xx�6 f;x
� �4þf 3f;xxxx

h i

;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð9Þ

we can rewrite Eq. (8) as

�ðf;tÞ2 þ ff;tt

h i

� c2
0 �ðf;xÞ2 þ ff;xx

h i

� 2c0c �3ðf;xxÞ2 � 4f;xf;xxx þ ff;xxxx

h i

� A1e
2

ðf;xxÞ2 � 2c0c
12

f
ðf;xÞ2f;xx �

6

f 2
ðf;xÞ4

� �

þ A1e
2

� 1

f 2
ðf;xÞ4 þ 2

f
f;xxðf;xÞ2

� �

¼ 0;

ð10Þ

which can be denoted as the following simple form by

using the properties of Hirota bilinear [39]:

D2
t ðf � f Þ � c2

0D
2
xðf � f Þ � 2c0cD

4
xðf � f Þ ¼ 0; ð11Þ

where D is the Hirota bilinear operator defined as [34]

Dm
t D

n
xD

k
yD

l
zðg � hÞ

¼ o

ot
� o

ot0

� �m
o

ox
� o

ox0

� �n
o

oy
� o

oy0

� �k
o

oz
� o

oz0

� �l

ðg � hÞ
	

	

	

	

	

x¼x0;y¼y0;z¼z0;t¼t0

:

Equation (11) can be solved by using Hirota’s

bilinear method. Expand f into a power series of a

small parameter e:

f ðx; tÞ ¼
X

þ1

n¼0

fnðx; tÞen; ð12Þ

which when substituted into Eq. (11) yields

Fig. 1 Schematic diagram

of the granular chain of

identical elastic spheres pre-

compressed by a static load

[33]
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ðD2
t � c2

0D
2
x � 2c0cD

4
xÞ

X

þ1

n¼0

fnðx; tÞen �
X

þ1

n¼0

fnðx; tÞen
 !

¼
X

þ1

n¼0

enðD2
t � c2

0D
2
x � 2c0cD

4
xÞ

X

mþl¼n

fm � fl

 !

:

ð13Þ

Setting the coefficient of the term for each order of e in

Eq. (14) to be zero, we obtain

D2
t � c2

0D
2
x � 2c0cD

4
x

� �

X

mþl¼n

fm � fl

 !

¼ 0; n

¼ 0;1; 2; . . .; ð14Þ

of which the first four equations are

ðD2
t � c2

0D
2
x � 2c0cD

4
xÞ f0 � f0ð Þ ¼ 0; ð15Þ

ðD2
t � c2

0D
2
x � 2c0cD

4
xÞ f1 � f0ð Þ ¼ 0; ð16Þ

2ðD2
t � c2

0D
2
x � 2c0cD

4
xÞ f2 � f0ð Þ þ ðD2

t � c2
0D

2
x � 2c0cD

4
xÞ f1 � f1ð Þ ¼ 0;

ð17Þ

2ðD2
t �c2

0D
2
x�2c0cD

4
xÞ f3 � f0ð Þþ2ðD2

t �c2
0D

2
x�2c0cD

4
xÞ f2 � f1ð Þ¼0:

ð18Þ

It is noted that Eqs. (15)–(18) are a set of recurrence

equations. To solve fn for n[ 1, we should first have a

solution of f0 (i.e., the first term of Eq. (12)).

Theoretically speaking, we can take any solution of

f0 which satisfies Eq. (15). Without of loss of gener-

ality, we follow Ref. [34] and assume f0 to be a

constant. Then Eq. (16) has an exponential eigen-

solution:

f1 ¼ ekxþxtþd; ð19Þ

where k and x may be interpreted as the wavenumber

and angular frequency, respectively, and d is an

arbitrary constant. Substitution of (19) into Eq. (16)

yields

ðx2 � c2
0k

2 � 2c0ck
4Þf0f1 ¼ 0: ð20Þ

from which we obtain the dispersion relation:

x2 � c2
0k

2 � 2c0ck
4 ¼ 0: ð21Þ

The sum of the eigen-solution, Eq. (19), w.r.t all or

partial possible values of j (j = 1 � � � N) also satisfies

Eq. (16). Therefore, we have the following eigen-

solution:

f1 ¼
X

N

j¼1

ehj ; hj ¼ kjxþ xjt þ dj: ð22Þ

Substitution of Eq. (22) into Eq. (17) yields

2ðD2
t �c2

0D
2
x�2c0cD

4
xÞ f2 � f0ð Þ

¼�ðD2
t �c2

0D
2
x�2c0cD

4
xÞ

X

N

i¼1

ehi �
X

N

j¼1

ehj

 !

¼�
X

N

i¼1

X

N

j¼1

ðxi�xjÞ2�c2
0ðki�kjÞ2�2c0cðki�kjÞ4

h i

ehiþhj

¼�2
X

1�i\j�N

ðxi�xjÞ2�c2
0ðki�kjÞ2�2c0cðki�kjÞ4

h i

ehiþhj ;

ð23Þ

from which we obtain

f2 � f0 ¼
X

1� i\j�N

Aije
hiþhj ; ð24Þ

where

Aij¼
ðxi�xjÞ2�c2

0ðki�kjÞ2�2c0cðki�kjÞ4

�ðxiþxjÞ2þc2
0ðkiþkjÞ2þ2c0cðkiþkjÞ4

; ði;j¼1;2;3Þ:

ð25Þ

Following the same process, we can obtain

f3 � f0¼�
X

1�i\j�N
1�l�N

ðxi�xjÞ2�c2
0ðki�kjÞ2�2c0cðki�kjÞ4

ðxiþxjÞ2�c2
0ðkiþkjÞ2�2c0cðkiþkjÞ4

ehiþhjþhl :

ð26Þ

All the other terms, fi (i ¼ 4; . . .;N), can be derived

similarly. Substituting fi into Eq. (12) with the result

inserted into Eq. (6), we can obtain the solutions to

Eq. (5). Here we present the detailed expressions of

the specific solutions for N = 1,2,3,4 with e ¼ 1. (This

is not out of generality because we have e ¼ eln e

which can be included into the exponent of the

exponential function, for details we refer to Ref. [40].)

(1) The bright single-solitary wave solution

When N = 1, we set f2 ¼ 0 and f0 ¼ 1 and then

have f ¼ f0 þ f1 ¼ 1 þ eh1 with h1 ¼ k1n� x1s
(where d1 ¼ 0 is assumed). Finally, we can obtain,

from Eq. (6), the single-solitary wave solution

v1ðx; tÞ ¼ �A1

k2
1eh1

1 þ eh1ð Þ2
; ð27Þ

where x2
1 ¼ c2

0k
2
1 þ 2c0ck4

1.
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(2) The bright double-solitary wave solution

When N = 2, we set f3 ¼ 0 and f0 ¼ 1, and then

have f ¼ f0 þ f1 þ f2 ¼ 1 þ eh1 þ eh2 þ A12eh1þh2

with hi ¼ kin� xis (where di ¼ 0 is assumed).

Finally, we can obtain, from Eq. (6), the double-

solitary wave solution

v2ðx; tÞ ¼ �A2

k2
1eh1 þ k2

2eh2 þ 2ðk1 � k2Þ2
eh1þh2 þ A12ðk2

2e2h1þh2 þ k2
1eh1þ2h2Þ

1 þ eh1 þ eh2 þ A12eh1þh2ð Þ2
;

ð28Þ

where A2 ¼ A1; x2
i ¼ c2

0k
2
i þ 2c0ck4

i (i ¼ 1; 2); and

A12 ¼ ðx1 � x2Þ2 � c2
0ðk1 � k2Þ2 � 2c0cðk1 � k2Þ4

�ðx1 þ x2Þ2 þ c2
0ðk1 þ k2Þ2 þ 2c0cðk1 þ k2Þ4

:

ð29Þ

The other multiple solitary wave solutions to

Eq. (5) can be obtained similarly. For instance, the

triple- and quadruple-solitary wave solutions are

v3ðx;tÞ¼�A3

o2

on02
ln½1þeh1 þeh2 þeh3 þA12eh1þh2

þA13eh1þh3 þA23eh2þh3 þA12A13A23eh1þh2þh3 �;
ð30Þ

and

v4ðx; tÞ ¼ �A4

o2

on02
ln½Kðx; tÞ�; ð31Þ

with A4 ¼ A3 ¼ A1,

Kðn0; sÞ ¼1 þ eh1 þ eh2 þ eh3 þ eh4 þ A12eh1þh2

þ A13eh1þh3A14eh1þh4 þ A23eh2þh3

þ A24eh2þh4 þ A34eh3þh4

þ A12A13A23eh1þh2þh3

þ A12A14A24eh1þh2þh4

þ A12A14A34eh1þh3þh4

þ A23A24A34eh2þh3þh4

þ A12A13A14A23A24A34eh1þh2þh3þh4

ð32Þ

Aij ¼
ðxi � xjÞ2 � c2

0ðki � kjÞ2 � 2c0cðki � kjÞ4

�ðxi þ xjÞ2 þ c2
0ðki þ kjÞ2 þ 2c0cðki þ kjÞ4

;

i; j ¼ 1; 2; 3; 4ð Þ:
ð33Þ

To some extent, the solitary wave solutions

obtained above and the asymptotic solutions con-

structed in Ref. [33] (see Eqs. (30)–(33) therein) are

different representations of the same physical phe-

nomenon. It is indeed not difficult to verify that the

derivations of the solutions in Ref. [33] w.r.t the space

coordinate x are the same as the bright solitary wave

solutions (27)–(31). However, we find that the coef-

ficient Aij in the present multiple solitary wave

solutions and those in Ref. [33] are different. To avoid

confusion, denote Aij in Ref. [33] as Aij.

Figure 2 presents the curves of A12 and A12 varying

with k2 for k1 ¼ 1,c0 ¼ 1, and c ¼ 0:5. Two situations,

x1 � x2 [ 0 and x1 � x2\0, are shown in Fig. 1a and

b, respectively. Discrepancy between A12 and A12 is

observed in Fig. 1a near the point k2 ¼ �k1ð¼ �1Þ
where A12 is infinite, while A12 is finite. As k2 becomes

far away from this point, A12 and A12 are close to each

other. In Fig. 2b for x1 � x2\0, A12 and A12 are in

good agreement even at the point k2 ¼ �k1ð¼ �1Þ.
Similar results can be obtained for other Aij (i,

j = 1,2,3,4).

The above analysis implies that there are two types

of double-solitary waves (k1 � k2\0 and k1 � k2 [ 0) in

Eq. (5), but not in KdV equation [33]. This is the most

important difference between the double-solitary

wave solutions obtained in the present paper and

Ref. [33]. The similar conclusion is applicable to other

multiple solitary wave solutions. In general, the

multiple solitary wave solutions in this paper have

more general forms (including the case of ki ? kj = 0)

than those obtained in Ref. [33].

By integrating Eq. (27) w.r.t x, the corresponding

dark single-solitary wave solution can be obtained:

u1ðx; tÞ ¼ �A1

k1eh1

1 þ eh1
: ð34Þ

Although it seems that the corresponding dark

multiple solitary wave solutions can be obtained by

integrating the bright ones (Eqs. (28), (30) and (31))

based on the relation v ¼ ou=ox, it is not easy to obtain

the closed-form expressions. However, as we men-

tioned above, the derivation of the multiple solitary

wave solutions in Ref. [33] (Eqs. (31)–(33)) w.r.t x is

the same as the solutions, Eqs. (28), (30) and (31), in

form. Therefore, we can directly write the dark

multiple solitary wave solutions corresponding to the
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bright ones (Eqs. (28), (30) and (31)). For example, the

dark double-solitary wave solution is

u2ðx; tÞ ¼ �A2

k1eh1 þ k2eh2 þ A12ðk1 þ k2Þeh1þh2

1 þ eh1 þ eh2 þ A12eh1þh2
þC;

ð35Þ

where C is a constant; and A12 is given by Eq. (29).

The other dark multiple solitary wave solutions can be

obtained similarly.

In addition, the multiple solitary wave solutions

obtained here still have the dynamic characteristics of

the solutions to the KdV equation described in

Ref.[33], that is, in some limiting cases

[ehi � 1; ehj�1 ði 6¼ jÞ], the multiple solitary wave

solutions reduce approximately to single-solitary

wave solutions (hi-single-solitary waves). Particu-

larly, for the double-solitary wave solution, we have.

(i) eh1 � 1 and eh2�1. In this case, we can remove

eh2 -independent terms by setting eh2 � 0. Then

Eq. (35) becomes

u2ðx;tÞ¼�A2

k1eh1 þk2eh2 þA12ðk1þk2Þeh1þh2

1þeh1 þeh2 þA12eh1þh2
þC��A2k1

eh1

1þeh1
þC

¼�1

2
A2k1

eh1 �1

eh1 þ1

� �

þC1¼�1

2
A2k1 tanh

h1

2
þC1;

ð36Þ

where C1 is a constant.

(ii) eh1�1 and eh2 � 1. In this case, we can remove

eh1 -independent terms by setting eh1 � 0. Then

Eq. (35) becomes

u2ðx; tÞ ¼ �A2

k1eh1 þ k2eh2 þ A12ðk1 þ k2Þeh1þh2

1 þ eh1 þ eh2 þ A12eh1þh2
þC

� � 1

2
A2k2 tanh

h2

2
þ C1:

ð37Þ

From these two limiting cases, we can see that the

dark double-solitary waves can degenerate into two

dark single-solitary waves. Similarly, according to the

above result, we can combine two single-solitary

waves into a double-solitary wave in a certain way. In

other words, the multiple solitary waves can be

regarded as elastic collision between single-solitary

waves. This provides us a way to excite multiple

solitary waves using single-solitary waves.

In order to further understand the dynamic charac-

teristics of the bright and dark solitary waves, we

investigate their characteristics in space–time domain,

frequency–wavenumber domain, frequency–space

domain, and time–wavenumber domain. Figures 3

and 4 show the corresponding results of the bright and

dark single-solitary wave solutions, respectively.

A bright single-solitary wave evolving in the

space–time domain is observed in Fig. 3a. Its disper-

sion curve shown Fig. 3b is evolved in a region around

an oblique line passing through the zero point.

Figure 3c and d describes the dynamic energy flow

in the evolution process in the space–frequency

domain and the time–wavenumber domain, respec-

tively. It is easy to see from the color scale bar that the

Fig. 2 Comparison of A12 and A12 with c0 ¼ 1, c ¼ 0:5 and k1 ¼ 1
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low-frequency part occupies the majority and is

concentrated near 0-frequecy, but the high-frequency

part occupies a relatively small proportion. That is to

say, the energy of the bright solitary wave is concen-

trated in the low-frequency domain.

Figure 4a shows the evolution of the dark single-

solitary wave in the space–time domain. Most of its

frequency and wavenumber are distributed near zero

point, see Fig. 4b. And its evolution diagrams in the

space-frequency domain [Fig. 4c] and time–

wavenumber domain [Fig. 4d] show that the energy

is symmetrically distributed on both sides near zero

frequency or wavenumber.

In fact, Figs. 3 and 4 describe the same physical

phenomenon, but in different ways. However, the

dispersion curve in Fig. 4b is relatively simple. It

seems clearer and more intuitive to describe the

physical phenomena of solitary waves with the bright

solitary waves. Thus, the following analysis will be

mainly focused on the bright solitary waves.

For the complicated double-solitary wave, we

consider the following two different cases: (I)

k1 � k2\0, and (II) k1 � k2 [ 0 by supposing

x1;x2 [ 0. The double-solitary wave in the former

case is called the Type-I double-solitary wave, and the

latter is called the Type-II double-solitary wave. As

indicated in Ref. [33], the multiple solitary waves can

be regarded as the interaction (or elastic collision) of

single-solitary waves. Therefore, the two cases men-

tioned above correspond to collisions of h1-solitary

wave and h2-solitary wave running in the opposite

(Type-I) and the same (Type-II) directions,

respectively.

Figure 5a shows the evolution of the Type-I bright

double-solitary wave [Eq. (28)] in the space–time

domain. It is demonstrated that the double-solitary

wave can be regarded as the elastic collision of two

single-solitary waves. As we know, the phase shift

after the interaction of solitary waves is an important

physical phenomenon [41]. However, the Type-I

Fig. 3 a Evolution of the bright single-solitary wave solution,

Eq. (27), in the space–time domain with c0 ¼ 1, c0 ¼ 0:5, e ¼
1:2 and k1 ¼ 1; b the dispersion curve corresponding to panel

(a); c and d show the energy transfer during the dynamic

evolution process in the space–frequency domain and time–

wavenumber domain, respectively
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double-solitary wave does not present a phase shift,

but exhibits a sharp peak at the center of the collision

between two single-solitary waves.

Figure 5b illustrates the dispersion curves of the

Type-I bright double-solitary wave corresponding to

Fig. 5a. It is shown that the dispersion curves are

concentrated in a cross-like region near two diagonal

lines passing through the zero point. The energy

transfer during the dynamic collision is shown in

Fig. 5c in the space–frequency domain and in Fig. 5d

in the time–wavenumber domain. Before the collision,

the energy flows from high frequencies/wavenumbers

to low frequencies/wavenumbers; during the collision

process, the energy concentrates to the low-frequency/

wavenumber region very quickly; and after the

collision, the energy flows from low frequencies/

wavenumbers to high frequencies/wavenumbers. For

the elastic collision, the total energy is conserved.

Figure 6 shows the evolution of the Type-I dark

double-solitary wave [Eq. (35)] in the space–time

domain corresponding to Fig. 5. It can be seen that the

waveform is very similar to a group of steps with

obvious changes in amplitude.

Figure 7 shows the evolution of the Type-II bright

double-solitary wave [Eq. (28)] in the space–time

domain. A dip appears at the collision center of two

single-solitary waves, and a significant phase shift

occurs after the collision, which is similar to the

solitary waves in the KdV equation (cf. Ref. [33]). The

corresponding dispersion curve shown in Fig. 7b is

distributed near two oblique lines passing through the

zero point with a very small angle. The evolutions in

the space–frequency domain [Fig. 7c] or time–

wavenumber domain [Fig. 7d] show that before the

collision, the energy flows from the high frequencies/

wavenumbers to low frequencies/wavenumbers. Dur-

ing the collision process, the energy is rapidly

concentrated to the low-frequency/wavenumber

region. After the collision, the energy flows from the

low frequencies/wavenumbers to high frequencies/

Fig. 4 a Evolution of the dark single-solitary wave solution

Eq. (34) in the space–time domain with c0 ¼ 1, c0 ¼ 0:5, e¼ 1.2

and k1 ¼ �1; b the dispersion curve corresponding to panel (a);

c and d show the energy transfer during the dynamic evolution

process in the space–frequency domain and time–wavenumber

domain, respectively
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wavenumbers. The total energy is conserved. The

Type-II dark double-solitary wave [Eq. (35)] corre-

sponding to Fig. 7a is shown in Fig. 8. Its waveform,

although exhibits steps with changes of amplitude, is

obviously different from that of the Type-I dark

double-solitary wave shown in Fig. 6.

Through the above analysis, we can summarize the

differences between the two types of double-solitary

waves: Type-I can be seen as two single-solitary

waves colliding in the opposite direction (cf. Figs. 5

and 6) without phase shift, and Type-II can be

regarded as two single-solitary waves colliding in

the same direction (cf. Figs. 7 and 8) with a phase shift

after collision.

The same method can be used to analyze the triple-

and quadruple-solitary wave solutions. The results are

similar and will not be presented here.

3 Numerical analysis of stability of double-solitary

waves

The stability of double-solitary wave will be studied

numerically by following the idea proposed in Ref.

[33]. A perturbation is randomly added on the solitary

wave solution as the initial condition, and then, the

evolution of the solitary wave in the system is

examined numerical. If the solitary wave is stable,

the perturbation will gradually disappear; otherwise,

the perturbation will increase exponentially with the

evolution, thus destroying the waveform of solitary

wave. The perturbation method has also been used in a

large number of laboratory experiments [42, 43], and

the experimental data are in good agreement with the

simulation results.

Fig. 5 a Evolution of the Type-I bright double-solitary wave

solution, Eq. (28), in the space–time domain with c0 ¼ 1,

c0 ¼ 0:5, e ¼ 1:2, k1 ¼ �1:5 and k2 ¼ 1:5; b the dispersion

curve corresponding to panel (a); panels (c) and (d) show the

energy transfer during the dynamic collision process in the

space–frequency domain and time–wavenumber domain,

respectively
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Fig. 6 Evolution of the

Type-I dark double-solitary

wave solution, Eq. (35), in

the space–time domain with

c0 ¼ 1, c0 ¼ 0:5, e ¼ 1,

k1 ¼ �1:5 and k2 ¼ 1:5

Fig. 7 a Evolution of the Type-II bright double-solitary wave

solution, Eq. (28), in the space–time domain with c0 ¼ 1,

c0 ¼ 0:5, e ¼ 1, k1 ¼ 2 and k2 ¼ 1:5; b the dispersion curve

corresponding to panel (a); panels c and d show the energy

transfer during the dynamic collision process in the space–

frequency domain and time-wavenumber domain, respectively
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Here we consider the collision of the following two

dark single-solitary waves running in the opposite

directions:

10 tanh½�ðx� 40Þ þ t� and 10 tanh½�ðx� 50Þ � t�;
ð38Þ

which, according to the previous analysis, should

generate the following Type-I dark double-solitary

wave:

u2ðx; tÞ ¼ 20
e�xþtþ40 + e�x�tþ50 þ 40e�2xþ90

1 þ e�xþtþ40 þ e�x�tþ50 � 20e�2xþ90

� 20:

ð39Þ

To examine the evolution stability of the dark

double-solitary wave, we use the fourth-order Runge–

Kutta method to solve Eq. (4) numerically by assum-

ing an initial excitation which is the displacement field

from Eq. (38) at time t = 0 with a uniformly dis-

tributed random perturbation of amplitude 10-4

[41–44]. The nondimensionalized time step in com-

putation is 10-3.

Figure 9 shows a comparison between the collision

stability analysis of two dark single-solitary waves

running in the opposite directions with the same wave

velocities governed by Eq. (4) and the corresponding

space–time evolution of Eq. (39) with the same

parameters. The evolution of the dark double-solitary

wave solution obtained from the Runge–Kutta method

is demonstrated in Fig. 9a with d0 ¼ 10�3. The results

show that the waveforms of the two single-solitary

waves remain stable, and the characteristics remain

unchanged. At t ¼ 700, the two single-solitary waves

collide and then return to the state before collision.

From the point of view of the whole dynamic process,

the two single-solitary waves successfully excite a

stable dark double-solitary wave. The space–time

evolution of the double-solitary wave shown in

Eq. (39) is illustrated in Fig. 9b with the same

parameters as in Fig. 9a. The similarity of Fig. 9a

and b implies that the solitary wave in Fig. 9a is the

Type-I double-solitary wave.

In order to study the influence of velocity on the

stability of solitary wave collision, we consider the

collision of the following two dark single-solitary

waves with different velocities:

10 tanh½�ðx� 55Þ þ 2t� and 10 tanh½�ðx� 45Þ � t�;
ð40Þ

which, according to the previous analysis, should

generate the following Type-I dark double-solitary

wave:

u2ðx; tÞ ¼ 20
e�xþ2t�55 + e�x�tþ45 þ 40e�2xþtþ100

1 þ e�xþ2t�55 þ e�x�tþ45 � 20e�2xþtþ100

� 20:

ð41Þ

Fig. 8 Evolution of the

Type-II dark double-solitary

wave, Eq. (35), in the

space–time domain with

c0 ¼ 1, c0 ¼ 0:5, e ¼ 1,

k1 ¼ 2 and k2 ¼ 1:5
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Following the same process as above analysis, we

solve Eq. (4) numerically using the fourth-order

Runge–Kutta method with the initial excitation from

the perturbed initial values of Eq. (40). Comparison

between the collision stability analysis of two dark

single-solitary waves running in the opposite direc-

tions with the different wave velocities governed by

Eq. (4) is shown in Fig. 10a, and the corresponding

space–time evolution of Eq. (41) with the same

parameters is illustrated in Fig. 10b. It is seen from

both Fig. 10a and b that the waveforms of the two

single-solitary waves are well preserved before the

collision, and the perturbation is not amplified. At

t ¼ 700, the two solitary waves collide, and the

perturbation increases exponentially. After the

collision, the waveform of the solitary wave becomes

distorted obviously. Therefore, the collision is unsta-

ble, and the excited double-solitary wave are also

unstable. Comparing these two figures, we find that the

solitary wave in Fig. 10a shows the Type-I dark

double-solitary wave, but it is not convergent and is

unstable.

Further numerical tests show that the generated

double-solitary wave can propagate stably for a longer

time (i.e., the life span becomes longer [45]) if the

velocity difference of two single-solitary waves are

smaller. This is an interesting phenomenon in granular

phononic crystals. It seems that only the opposite

collision between two single-solitary waves with the

same velocities, as shown in Fig. 9, is stable.

Fig. 9 a Collision stability analysis of two dark single-solitary

waves with the same velocity running in the opposite directions

governed by Eq. (4) with d0 ¼ 10�3, and b the space–time

evolution of the Type-I dark double-solitary wave [Eq. (39)]

with the same parameters as in panel (a)

Fig. 10 Collision stability analysis of two dark single-solitary waves with different wave velocities running in the opposite directions

governed by Eq. (4) with d0 ¼ 10�3, and (b) the space–time evolution of Eq. (41) with the same parameters as in (a)
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Next, we check the stability of the Type-II dark

double-solitary wave by solving Eq. (4) with d0 ¼
10�3 using the fourth-order Runge–Kutta method.

Figure 11 shows the stability analysis of a Type-II

double-solitary wave solution by Eq. (4) with

d0 ¼ 10�3. The data from the Type-II double-solitary

wave shown in Fig. 8 at a certain time are used as the

input signal (see Fig. 11a). The perturbation magni-

tude of 10–4 is added to the signal. Figure 11b shows

that a double-solitary wave is excited in the original

system before t = 1000, and the waveform keeps

good. But after t = 1000, the perturbation is amplified

exponentially, and the waveform loses the character-

istics of the solitary wave. It is obvious that the Type-II

double-solitary wave is unstable. Further numerical

calculations support this conclusion although we

cannot exhaust all cases.

Collision of moving solitary waves is an interesting

phenomenon which is closely related to the stability of

the single-solitary waves. However, our analytical

solutions and corresponding numerical simulations

show that the stability of collision is related to the

stability of double-solitary waves. In other words, only

when there is a stable double-solitary wave, the

collision of two single-solitary waves is stable.

Next, we will present qualitative analysis about the

stability of multiple solitary waves from the point of

view of geometry.

4 Qualitative analysis of stability of multiple

solitary waves

According to the analysis in Section III, the multiple

solitary waves can be regarded as (or equivalently be

excited by) the dynamic interaction (collision) of

single-solitary waves. We first consider the case of a

double-solitary wave. The two kinds of double-

solitary waves (Type-I and Type-II) can be schemat-

ically illustrated in Fig. 12 where the strips represent

the peak regions of the bright single-solitary waves or

the rapid-changing regions of the dark single-solitary

waves. In the other regions, (I)–(IV), the amplitude

tends to zero/constant for the bright/dark double-

solitary wave. So, except in the strongly interacting

regions marked by area S, the double-solitary wave

can be regarded approximately as the superposition of

two single-solitary waves (also refer to Ref. [33]). In

the strongly interacting region, the two solitary waves

interact sufficiently and generate intense energy

exchange and flow. We find that bigger the area is,

the longer the running time of the simulation program

is. Thus, it is reasonable to infer that the stability of the

double-solitary wave is relevant to the area of the

strongly interacting region, and the smaller the area is,

the more stable the system is.

The area of the strongly interacting region is

Fig. 11 Numerical simulation of evolution of a Type-II double-

solitary wave solution by Eq. (4) with d0 ¼ 10�3: a The profile

of Type-II double-solitary wave solution from Fig. 8 at

t = - 23, and b evolution of the solution with the initial

condition from panel (a) with a perturbation

123

Analytical solutions of solitary waves and their collision stability in a pre-compressed



S ¼ d1d2

sin a
; ð35Þ

where a (0\a� 90�) is the angle between the two

single-solitary waves; and d1 and d2 are the effective

widths of the single-solitary waves. It is easy to see

that S is a monotone decreasing function of a with the

minimum value of Smin ¼ d1d2 when a ¼ 90�. If the

double-solitary wave is stable at an angle smaller than

a, then it is also stable at the angle a. The bigger the

angle a is, the smaller the area S is, and therefore the

more stable the double-solitary wave is. a ¼ 90�

yields the minimum S. The Type-I double-solitary

wave includes the case of a ¼ 90�, which means it

may be stable. It is obvious that the angle a of Type-II

double-solitary wave is smaller than that of Type-I and

is generally much smaller than 90�. Therefore, the

Type-II double-solitary wave is generally unstable.

It is worth noting that the width of solitary waves is

the diameter of five spheres [32]. Since the space

width of solitary wave is also determined after the

sphere chain is selected, we ignore the influence of the

width of solitary wave on the stability when we

consider its geometric structure.

Next, we consider the case of a triple-solitary wave

which can be treated as the dynamic interaction of

three single-solitary waves.

Figure 13 shows a schematic diagram for dynamic

analysis of triple-solitary waves which can also be

regarded as the interaction between double-solitary

waves and single-solitary waves. There are two

situations: one single-solitary wave propagates against

the other two (or one double-solitary wave) as shown

in Fig. 13a, and all three single-solitary waves (or one

single-solitary wave and one double-solitary wave)

propagate in the same direction as shown in Fig. 13b.

In both situations, we will definitely have two single-

solitary waves propagating in the same direction. And

the above analysis demonstrates that the collision of

these two single-solitary waves generates an unsta-

ble Type-II double-solitary wave. Therefore, the

triple-solitary wave is generally unstable. Indeed, we

could not find a stable triple-solitary wave through

many numerical tests.

Similarly, a multiple solitary wave with the order

higher than three is generally unstable.

5 Conclusions

In this paper, the analytical solutions of multiple

solitary waves in a pre-compressed spherical chain are

derived based on the homogeneous balance principle

and bilinear method in the long-wave approximation.

The dynamic behavior and stability of the double-

solitary waves are studied in detail. The main results

and conclusions may be summarized as follows:

(1) The present solutions show that the multiple

solitary waves can be regarded as the dynamic

interaction (collision) of multiple single-solitary

waves. The obtained solutions have the same

form those constructed through the inspiration

of the solutions to the KdV system. However, a

Fig. 12 Schematic

diagrams of two kinds of

double-solitary waves

excited by the interaction

(collision) of two single-

solitary waves: (a) Type-I,

and (b) Type-II. The yellow

intersection regions marked

by area S represent the

strong-interaction regions.

The phase shift is neglected

in (b) because it does not

affect the interaction of

solitary waves
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great difference between the present solutions

and those from the KdV system appears when

the wavenumbers of arbitrary two single-soli-

tary waves are opposite (i.e., when ki ¼ �kj in

Eq. (34)). This implies that the KdV system

cannot exactly capture the nature of the original

granular system.

(2) The detailed analysis of the double-solitary

wave which is interpreted as collision of two

single-solitary waves is provided. Different

dynamic behaviors depending on the collision

directions are exhibited. The opposite collision

does not show any phase shift and may generate

a stable double-solitary wave, and it is contrary

for the collision in the same direction. In this

way, we divide the double-solitary wave into

two categories which are termed as Type-I

(opposite collision) and Type-II. Numerical

simulation shows a stable Type-I double-soli-

tary wave. Other high-order multiple solitary

waves can be analyzed in the similar way.

(3) The strongly nonlinear interaction between

single-solitary waves takes place in a small

spatiotemporal region. We argue that the

smaller this region is, the more likely the system

is to be stable. This provides a possible way to

determine the stability of multiple solitary

waves qualitatively.

It should be mentioned that the numerical instead of

the analytical perturbation method is applied for

stability analysis of solitary waves because of the

complexity of the problem. One disadvantage of the

numerical method is that it can only examine the

stability of the system in the period of the simulated

evolution. Obviously, we cannot simulate the evolu-

tion in an infinite time period.

Although we argue that a stable multiple solitary

waves with the order higher than three is much

impossible to exist in a pre-compressed identical

spherical chain. However, it does not mean that it

cannot exist in a polyatomic ball chain. It should be an

interesting topic to study multiple solitary waves and

even chaos [46, 47] in polyatomic granular crystals

and granular metamaterials.
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