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a b s t r a c t 

The homogenized medium of the gyro lattice with the mechanical quantum Hall effect, 

here denoted as the gyroscopic elastic medium, is governed by a new set of elastody- 

namic equations with the chiral density. This paper presents a generic theory based on 

the Stroh formalism to disclose the non-reciprocal Rayleigh waves supported by the gy- 

roscopic medium. The Stroh formulation is investigated in the general case of anisotropic 

elasticity, and after introducing the chiral density, it is extended to yield new forms of 

eigenvalue equations, which are distinct for surface waves traveling in opposite direc- 

tions. Numerical examples are performed in the isotropic elasticity scheme, illustrating 

the non-reciprocal Rayleigh waves as well as the evolution of the particle motion trajec- 

tory and polarization at shallow depths as the gyro coupling magnitude increases. The 

developed theory confirms the prediction for the classical Rayleigh wave that is recip- 

rocal when the gyro coupling term vanishes. Finally, a general effective-medium method 

that relies on the surface response to external excitation is proposed for the estimation 

of the overall properties of gyroscopic composite materials in the long-wavelength regime. 

Consistency in the wave response of gyroscopic composites with periodic inclusions and 

their effectively homogeneous materials is demonstrated for a large range of gyro coupling 

constants. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Rayleigh waves, named after its predictive discovery in 1885 by Lord Rayleigh, refer to a type of surface acoustic waves

that could propagate near the free surface of solids with rapid amplitude decay in depth ( Rayleigh, 1885 ). Rayleigh waves

have proven to be of primary concern in many circumstances. They are important parts of ultrasonic devices, used for ma-

terials characterization and defects/cracks detection, or signal processing to change an input electric signal into the required

spectrum. In seismology, the understanding of Rayleigh waves caused by earthquakes has been of great importance in pre-

venting severe damage to infrastructures. Highly used in these applications, the control of this type of surface wave has been

of longstanding interest in both scientific and engineering communities. In the past century, advances in artificial materials

and manufacturing have provided a broad degree of freedom in tailoring the behavior of these surface waves, making it
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possible to manipulate vibration magnitude, wave speed, polarization mode, and frequency response in terms of designing

specific microstructures of a hosting medium or decorating the complex geometry (such as pillars, holes, grooves, and res-

onators) on the object’s surface ( Assouar and Oudich, 2011 ; Colquitt et al., 2017 ; Li et al., 2018 ; Wu et al., 2004 ; Zhou et al.,

2014 ). 

Despite decades of research on the manipulation of Rayleigh waves, few strategies have been developed for the breaking

of the reciprocal theorem so that different wave velocities can be observed in two opposite directions, or more particu-

larly the waves are only allowed to propagate in specific directions. In principle, this non-reciprocal behavior may provide

a wider degree of freedom to manipulate Rayleigh waves for more advanced applications, such as in non-destructive de-

tection, signal processing, and seismic wave mitigation. The wave reciprocity is warranted by the time-reversal symmetry

of the material/structure systems. In electronic media, the quantum Hall effect (QHE) arises when the time-reversal sym-

metry is broken, resulting in the one-way edge modes of currents in two-dimensional (2D) electron systems subject to a

perpendicular magnetic field ( Haldane, 1988 ; Hasan and Kane, 2010 ). Owing to the analogies between electromagnetic and

mechanical scattering processes, specially designed mechanical structures to break the time-reversal symmetry have been

recently reported ( Chen et al., 2019 ; Ding et al., 2019 ; Fleury et al., 2014 ; Nash et al., 2015 ; Wang et al., 2015 ). One of the

mechanical QHE analogs consisted of a periodic lattice loaded with a spinning gyroscope ( Brun et al., 2012 ; Milton and

Willis, 2007 ). The angular momentum effect of gyros led to the chiral coupling of the inertial motion, which played an

analogous role to the biasing magnetic field in the quantum Hall system. As a result, the gyro periodic lattice possessed the

same topologically protected one-way edge state that was robust against the surface defects ( Nash et al., 2015 ; Wang et al.,

2015 ). 

In the long-wavelength limit, the gyro lattice with a mechanical QHE can be equivalently represented by the Cauchy

elastic medium with the Hermite density ( Brun et al., 2012 ; Carta et al., 2014 ). This new set of equation systems may have

helped to provide an understanding of unidirectional surface waves through setting up analytical surface state equations,

similar to the formulation of Rayleigh wave equations in the pioneering work by Lord Rayleigh ( Rayleigh, 1885 ). As a prelim-

inary exploration of this issue, we have verified theoretically the existence of unidirectional surface states of the imaginary

“gyroscopic fluids” that possess the Hermite density, yet don’t support the shearing ( Zhou and Zhao, 2019 ). Acoustic wave

in fluids is only relevant to the longitudinal mode. However, solids that withstand shear involve both the longitudinal and

transverse modes, and in particular, for gyroscopic elastic solids, these two wave modes are strongly coupled due to the chi-

ral inertial effect. This inherently different wave coupled phenomenon makes the characterization of non-reciprocal Rayleigh

waves much more complicated and cannot be simply captured from the method in the prior work ( Zhou and Zhao, 2019 ).

To address this challenge, the Stroh formalism ( Stroh, 1962 ) is adopted and extended, which has proven to be an efficient

method for analyzing the structure and existence of surface waves in classical elastic media. Compared to the previously de-

veloped formalism of the Stroh method ( Chadwick and Smith, 1977 ; Fu, 2007 ; Fu et al., 2013 ; Parker, 2013 ; Tanuma, 2007 ),

the modified Stroh formalism in the present work can efficiently take into account the chiral inertial coupling in gyroscopic

solids. Here, the fundamental solution of the non-reciprocal Rayleigh wave with the Stroh’s eigen-matrix is formulated in a

complex domain for the first time. 

The paper is organized as follows. In Section 2 , the Stroh formalism is extended to solve the surface state of the gyro-

scopic continuum in the most general case of anisotropic elasticity. Equations and conditions for the existence of surface

states will be derived. In Section 3 , the isotropic elasticity case of the generic theory in Section 2 is described and nu-

merical examples are conceived to demonstrate non-reciprocal Rayleigh waves supported by gyroscopic elastic continua. In

Section 4 , the non-reciprocal Rayleigh wave phenomena are studied in a periodic structure consisting of gyroscopic inclu-

sions embedded in an elastic matrix. A general homogenization method for retrieving effective elastic parameters and chiral

densities is presented. The conclusions are outlined in Section 5 . 

2. Stroh formalism for elastodynamic systems with chiral density 

2.1. Description of the problem 

Consider a 2D elastic gyroscopic medium in plane strain that occupies a semi-infinite space as shown in Fig. 1 . The

equation of inertial motion of elastic gyroscopic medium follows from ( Brun et al., 2012 ; Carta et al., 2014 ) 

∇ · σ = ρ∂ 2 u /∂t 2 , (1) 

where σ is the Cauchy stress tensor and u is the displacement vector. The density tensor ρ takes the chiral form 

[ ρ] = 

[
ρ iα

−iα ρ

]
, (2) 

where ρ is the inertial density, and the off-diagonal elements describe the coupling between longitudinal and lateral mo-

tions with the imaginary unit denoting the phase shift between the gyroscopic force and displacement. The spinner constant

α is related to the characteristic length and moment of inertia of the gyroscope ( Brun et al., 2012 ), and α could be real pos-

itive or negative value to describe the inversion of the spinning direction of the gyroscope. The constitutive equation of the

gyroscopic medium in the most general case of anisotropic elasticity is given by 

σ= C : ε , (3) 
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Fig. 1. The geometry of the problem for formulating surface states of a half-space gyroscopic elastic medium with the traction-free surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where C is the fourth-order elasticity tensor, ɛ is the infinitesimal strain tensor, which is related to the displacement u by

ε = 

1 
2 ( u ∇ + ∇u ) . By substitution of Eq. (3) into (1) , the elastodynamic equation of the gyroscopic medium can be written

in terms of the displacement as 

∇ · ( C : ∇u ) = ρ∂ 2 u /∂ t 2 . (4)

In the Cartesian coordinate system of base vectors e 1 and e 2 , Eq. (4) is written in the component form as 

C jkrs 

∂ 2 u r 

∂ x k ∂ x s 
= ρ jk 

∂ 2 u k 

∂ t 2 
. (5)

Let m = m j e j and n = n j e j be orthogonal unit vectors. The gyroscopic medium occupies the half-space n · x ≤ 0, where

x is the position vector, and we seek solutions of a surface wave that propagates along the traction-free surface n · x = 0 .

Notice that the surface wave solution would depend on the choice of the direction of the traction-free surface in the general

anisotropic case. Thereby, the vectors m and n are set different from e 1 and e 2 in the present study. 

2.2. New forms of wave equations 

The general expression of displacement fields in the half-space gyroscopic medium can be expressed as 

u = a e −iξ ( m ·x + pn ·x −v t ) , (6)

where a is the unknown complex amplitude. The criterion for the existence of surface waves is the fact that the wave

fields decay exponentially in the direction perpendicular to the surface such that the wave can only propagate along the

interface without any decaying. Determination of the propagation velocity v of this surface wave is the main task of this

study. According to this definition, the parallel wave number ξ , which is equal to ω/ v , should be purely real, meanwhile, the

imaginary part of the normal wave number p must be non-zero so that the wave fields could decay at a distance far away

from the interface. 

Differentiating twice the displacement (6) over space and time, respectively, leads to 

∂ 2 u 

∂ x k ∂ x s 
= −ξ 2 ( m k + p n k ) ( m s + p n s ) e 

−iξ ( m ·x + pn ·x −v t ) a r e r , (7)

∂ 2 u 

∂ t 2 
= −ξ 2 v 2 e −iξ ( m ·x + pn ·x −v t ) a r e r . (8)

Substitution of the above equations into the wave Eq. (5) gives rise to [
C jkrs ( m k + p n k ) ( m s + p n s ) − ρ jr v 2 

]
a r = 0 . (9)

Expansion of Eq. (9) generates [
C jkrs m k m s − ρ jr v 2 + p 

(
C jkrs m k n s + C jkrs n k m s 

)
+ p 2 C jkrs n k n s 

]
a r = 0 . (10)

We define the first two terms in the bracket as the gyroscopic elastic coefficients, denoted by C 
gyro 

jkrs 
, which gives 

C gyro 

jkrs 
= C jkrs − ρ jr v 2 m k m s . (11)

To proceed, three matrices Q, R , and T were introduced ( Tanuma, 2007 ) 

[ Q ] jr = C gyro 

jkrs 
m k m s , [ R ] jr = C gyro 

jkrs 
m k n s , [ T ] jr = C gyro 

jkrs 
n k n s . (12)

Consider the fact that m and n are unit vectors perpendicular to each other, namely m k m k = 1 , n k n k = 1 , and m k n k = 0 .

Q, R, and T can be rewritten as 

[ Q ] jr = C jkrs m k m s − ρ jr v 2 , [ R ] jr = C jkrs m k n s , [ T ] jr = C jkrs n k n s . (13)
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In terms of Q, R, and T , the wave Eq. (10) can be written in the following compacted form [
Q + p 

(
R + R 

T 
)

+ p 2 T 

]
a = 0 , (14) 

where the superscript “T ” stands for the tensor transpose. An alternative form of Eq. (10) can be written as [
C gyro 

jkrs 
( m k + p n k ) ( m s + p n s ) 

]
a r = 0 . (15) 

For general anisotropic material, Eq. (10) leads to the quadratic eigenvalue problem with the eigenvalue p , which belongs

to a nonlinear eigenproblem and is not easily solved. Besides, the presence of Hermite density ρ jr adds more difficulty to the

analysis of Eq. (10) . Thereby, the direct computation of the eigenvalue p using Eq. (10) is very difficult. Without an explicit

expression of the displacement solution, it would be also difficult to compute the surface wave velocity according to the

traction free boundary conditions. To overcome the above challenges, the Stroh formalism will be adopted and significantly

modified to derive analytic conditions for the existence of surface waves propagating at the traction-free boundary of a

half-space gyroscopic elastic medium. 

2.3. Surface state equation 

The Cauchy stress vector t at the free surface, t = σ jk n k e j , is expressed as a function of the displacement by 

t = C jkrs 

∂ u r 

∂ x s 
n k e j . (16) 

Substitution of Eq. (6) into (16) results in 

t = −iξ
[
C jkrs ( m s + p n s ) n k 

]
a r e 

−iξ ( m ·x s −v t ) e j , (17) 

where x s refers to the position vector of points at the free surface. With the help of Eq. (13) , the interface stress vector can

be written as 

t = −iξ l e −iξ ( m ·x s −v t ) , (18) 

where l is the complex amplitude of the traction, given by 

l = 

(
R 

T + pT 

)
a . (19) 

Using Eq. (19) , the explicit expression for p a is obtained as 

pa = −T 

−1 R 

T a + T 

−1 l . (20) 

Note that in Eq. (20) , the matrix T is invertible and its inverse matrix T −1 exists according to the convexity of elastic

potentials ( Tanuma, 2007 ). Eq. (20) is one of two necessary equations for formulating the surface state. To acquire the other,

multiplying p on both sides of Eq. (19) produces 

pl = 

(
p R 

T + p 2 T 

)
a . (21) 

Eq. (14) can be rewritten as −( Q + pR ) a = ( p R 

T + p 2 T ) a , which is substituted into Eq. (21) leading to 

pl = −( Q + pR ) a . (22) 

To eliminate p on the r.h.s. of Eq. (22) , substituting (20) into (22) gives rise to 

pl = 

(
−Q + R T 

−1 R 

T 
)
a − R T 

−1 l . (23) 

Combining Eqs. (20) and (23) leads to the final form of the Stroh’s eigenvalue equation 

N 

[
a 
l 

]
= p 

[
a 
l 

]
, (24) 

where p is the eigenvalue, [ a l ] T is the eigenvector, and the 4 × 4 Stroh eigen-matrix N is defined as 

N = 

[
−T 

−1 R 

T T 

−1 

−Q + R T 

−1 R 

T −R T 

−1 

]
. (25) 

In contrast to the quadratic eigenvalue Eq. (10) , Eq. (24) leads to the linear eigenvalue problem, which is readily solved

even in the presence of Hermite density. 

Now recall the wave Eq. (14) , which would result in the following secular equation that the eigenvalue p must satisfy 

det 
[
Q + p 

(
R + R 

T 
)

+ p 2 T 

]
= 0 . (26) 

Taking the conjugate transpose (denoted by the superscript “∗”) on Eq. (26) will obtain 

det 
[
Q 

∗ + p̄ 
(
R + R 

T 
)

+ p̄ 2 T 

∗] = 0 , (27) 
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where the overbar denotes the conjugate operation. The matrix Q relates the Hermite form, satisfying Q 

∗ = Q . Moreover, T

is the real-valued matrix according to its definition in Eq. (13) , which implies that T ∗ = T T with [ T T ] r j = C rk js n k n s . According

to the relation C rk js = C jsrk , we further have T T = T . Consequently, Eq. (27) can be rewritten as 

det 
[
Q + p̄ 

(
R + R 

T 
)

+ p̄ 2 T 

]
= 0 (28)

It is found by comparing Eqs. (26) and (28) that p and its conjugate p̄ are both eigenvalues of the secular equation. 

It can be deduced from the above analyses that eigenvalues of the surface wave Eq. (24) consist of two conjugate pairs,

which are denoted as p + 
1 

and p −
1 

( = p̄ + 
1 

) for one pair, p + 
2 

and p −
2 

( = p̄ + 
2 

) for the other. Here, the superscript “+ ” or “-” symbol

identifies the sign of the imaginary part of p and also indicates the forward or backward propagation direction of the surface

waves. The associated eigenvectors are denoted by a + 
1 

, a −
1 

, a + 
2 

and a −
2 

for the displacement while l + 
1 

, l −
1 

, l + 
2 

and l −
2 

denotes

the surface traction. According to Eq. (6) , the modal displacement fields can be expressed explicitly as 

u 

+ 
j 

= a + 
j 
e −iξ

(
m ·x + p + 

j 
n ·x −v t 

)
, j = 1 , 2 , (29)

for the surface wave traveling toward the positive m direction, in which v > 0 and ξ = ω/ v > 0 , and 

u 

−
j 

= a −
j 
e −iξ

(
m ·x + p −

j 
n ·x −v t 

)
, j = 1 , 2 , (30)

for the surface wave traveling toward the negative m direction with v < 0 and ξ < 0. The surface traction is expressed as 

t = 

{−iξc + 
j 

l + 
j 
e −iξ ( m ·x s −v t ) , v > 0 

−iξc −
j 

l −
j 
e −iξ ( m ·x s −v t ) , v < 0 

(31)

where c + 
j 

and c −
j 

are unknown coefficients. The traction-free boundary condition t = 0 requires that 

c + 
j 

l + 
j 

= 0 , for v > 0 ; c −
j 

l −
j 

= 0 , for v < 0 . (32)

Thereby, the wave speed v can be solved from 

det 
[
l + 1 , l 

+ 
2 

]
= 0 , for v > 0 ; det 

[
l −1 , l 

−
2 

]
= 0 , for v < 0 (33)

In the case of α = 0 , Eq. (25) defines the real-valued matrix N . By imposing the conjugate operation on (24) , we deduce

that a + 
j 

and a −
j 

as well as l + 
j 

and l −
j 

are conjugate to each other. This implies that the forward ( v > 0) and backward ( v < 0)

traveling waves possess the same mode shape, and thus implies the same velocity magnitude. If α � = 0, we can infer the

dissimilar speeds for waves propagating in two opposite directions because the pair a + 
j 

and a −
j 

or l + 
j 

and l −
j 

are no longer

conjugates owing to the complex operator N . 

2.4. Conditions for identifying the surface mode 

The solutions of Eq. (33) contain both the surface and bulk states supported by the system. The condition for identifying

a surface mode is that the imaginary part of p must be non-zero so that the wave fields could decay at a distance far away

from the interface. In this section, an inequality will be given to identify a wave velocity range corresponding to the surface

mode, within which the imaginary parts of the associated eigenvalues p are non-zero. 

Introduce two orthogonal unit vectors ˜ m and ˜ n , which are obtained by rotating the unit vectors m and n around the

coordinate origin by an angle φ ( −π ≤ φ < π ). The vectors ˜ m and ˜ n are written as a function of φ by ( Tanuma, 2007 ) 

˜ m ( φ) = m cos φ + n sin φ, ˜ n ( φ) = −m sin φ + n cos φ (34)

We define the Hermitian matrix ˜ Q (φ) as [
˜ Q ( φ) 

]
jr 

= C jkrs ˜ m k ˜ m s − ρ jr v 2 cos 2 φ (35)

Notice that ˜ Q (0) is equal to Q in Eq. (13) . Two real eigenvalues, which are denoted as q 1 ( φ) and q 2 ( φ), can be solved from

the 2 × 2 Hermitian matrix ˜ Q (φ) . We claim that the condition for identifying the surface mode is that the matrix ˜ Q (φ) is

positive definite, namely q 1 ( φ), q 2 ( φ) > 0, for any φ. In other words, if ˜ Q (φ) is positive definite for the wave velocity v of a

mode, the eigenvalue p would surely possess a non-zero imaginary part and corresponds to a surface mode, as demonstrated

below. 

We first examine the case that det ̃  Q (φ) = 0 . When cos φ � = 0, ˜ Q (φ) is written in terms of Q, R and T as 

˜ Q ( φ) = cos 2 φ
[
Q + tan φ

(
R + R 

T 
)

+ tan 

2 φT 

]
(36)

If det ̃  Q (φ) = 0 , it can be obtained from Eq. (36) that 

det 
[
Q + tan φ

(
R + R 

T 
)

+ tan 

2 φT 

]
= 0 (37)

By comparing Eqs. (14) and (37) , the real-valued eigenvalue p = tan φ can be found, indicating that det ̃  Q (φ) = 0 doesn’t

correspond to a surface mode. Notice that det ̃  Q (φ) = 0 cannot appear under a special angle φ = φ+ with cos φ+ = 0 , because
˜ Q ( φ+ ) = T , where T is always positive definite as a result of the convexity of elastic potential energy. We next consider the
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case that det ̃  Q (φ) < 0 . Assume that φ− is an angle satisfying det ̃  Q ( φ−) < 0 . Recall that det ̃  Q ( φ+ ) > 0 holds for the angle

φ+ that satisfies cos φ+ = 0 . Owing to the fact that det ̃  Q (φ) is a continuous function of φ in the interval from −π to π ,

one can always determine an angle φ0 such that det ̃  Q ( φ0 ) = 0 . However, det ̃  Q ( φ0 ) = 0 would result in a real-valued p , as

demonstrated previously. Thereby, det ̃  Q (φ) < 0 doesn’t also correspond to a surface mode. Based on the above analysis, we

conclude that the condition for identifying the surface mode is given by det ̃  Q (φ) > 0 , or equivalently 

q 1 ( φ) , q 2 ( φ) > 0 for any φ (38) 

It is noteworthy that the presence of a real-valued eigenvalue p is excluded by the condition (38) . To explain this, assume

that there exists a real-valued eigenvalue p under condition (38) . For an arbitrary real value p ∈ R , one can always define

an angle φ that satisfies p = tan φ, so that Eqs. (14) and (37) are identical. Then we can obtain det ̃  Q (φ) = 0 from Eq. (36) ,

which however contradicts with the condition (38) . 

3. Non-reciprocal Rayleigh waves in the isotropic case 

In this section, the surface state equation and the condition for identifying the surface mode are given for continuum ma-

terials with isotropic elasticity and chiral density. Numerical examples are provided to illustrate the non-reciprocal behaviors

of Rayleigh surface waves. 

3.1. Surface state equation 

In the isotropic case, the elasticity tensor C jkrs is given by 

C jkrs = λδ jk δrs + μ
(
δ jr δks + δ js δrk 

)
(39) 

where δjk is Kronecker’s delta, and λ, μ are the Lamé constants. The matrices Q, R , and T in Eq. (13) are simplified as 

Q = 

[
λ + 2 μ − ρv 2 −iαv 2 

iαv 2 μ − ρv 2 

]
, R = 

[
0 λ
μ 0 

]
, T = 

[
μ 0 

0 λ + 2 μ

]
. (40) 

It can be verified that three matrices in Eq. (40) are isotropic, retaining the invariant form with the rotation of coordi-

nates. The Stroh eigen-matrix N defined by Eq. (25) is expressed as 

N = 

⎡ 

⎢ ⎢ ⎣ 

0 −1 

1 
μ 0 

− λ
λ+2 μ

0 0 

1 
λ+2 μ

ρv 2 − 4 λμ+4 μ2 

λ+2 μ
iαv 2 0 − λ

λ+2 μ

−iαv 2 ρv 2 −1 0 

⎤ 

⎥ ⎥ ⎦ 

(41) 

Solving the matrix N for the eigenvalue p to generate 

p ±1 = ±i 

√ 

1 − ( λ + 3 μ) ρv 2 + 

√ 

( λ + μ) 
2 ρ2 v 4 + 4 μ( λ + 2 μ) α2 v 4 

2 μ( λ + 2 μ) 
(42) 

p ±2 = ±i 

√ 

1 − ( λ + 3 μ) ρv 2 −
√ 

( λ + μ) 
2 ρ2 v 4 + 4 μ( λ + 2 μ) α2 v 4 

2 μ( λ + 2 μ) 
(43) 

The corresponding traction part of eigenvectors can be determined according to Eq. (24) , producing 

l ±1 = 

[
μp ±

1 
β±

1 
+ μ

λβ±
1 

+ ( λ + 2 μ) p ±1 

]
, l ±2 = 

[
μp ±

2 
β±

2 
+ μ

λβ±
2 

+ ( λ + 2 μ) p ±2 

]
, (44) 

where 

β±
1 = 

( λ + μ) 

[ 
1 −

(
p ±

1 

)2 
] 

−
√ 

( λ + μ) 
2 
[ 

1 + 

(
p ±

1 

)2 
] 2 

+ 4 α2 v 4 

2 p ±
1 ( λ + μ) + 2 iαv 2 

, (45) 

β±
2 = 

( λ + μ) 

[ 
1 −

(
p ±

2 

)2 
] 

+ 

√ 

( λ + μ) 
2 
[ 

1 + 

(
p ±

2 

)2 
] 2 

+ 4 α2 v 4 

2 p ±
2 ( λ + μ) + 2 iαv 2 

. (46) 

Substituting Eq. (44) into (33) results in the following equation that determine the surface wave velocity 

β+ 
1 
β+ 

2 

(
p + 

1 
− p + 

2 

)
+ β+ 

2 
− β+ 

1 (
p + 

1 
− p + 

2 

)
+ p + 

1 
p + 

2 

(
β+ 

2 
− β+ 

1 

) = 1 + 2 

μ

λ
, for v > 0 (47) 
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Fig. 2. The surface wave velocity v (solid line) and cutoff velocity v c (dashed line) for different values of μ/ λ in four cases α/ ρ= 0 (a), 0.5 (b), 1.5 (c), and 

3 (d). The used material parameters are λ= 10 GPa and ρ= 10 0 0 kg/m 

3 . 
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(
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1 
− p −

2 

)
+ β−

2 
− β−

1 (
p −

1 
− p −

2 

)
+ p −

1 
p −

2 

(
β−

2 
− β−

1 

) = 1 + 2 

μ

λ
, for , v < 0 (48)

When α = 0 , we have β+ 
j 

= −β−
j 

and p + 
j 

= −p −
j 

, thus the two Eqs. (47) and (48) are identical, giving rise to the surface

wave speed irrelevant to the traveling direction. When α � = 0, Eqs. (47) and (48) would lead to different velocity magnitudes

of forward and backward waves. 

Below is an analysis of the condition for identifying the surface mode in the isotropic case. The matrix ˜ Q (φ) as defined

in Eq. (36) is simplified as 

˜ Q ( φ) = 

[
( λ + μ) cos 2 φ + μ ( λ + μ) cos φ sin φ

( λ + μ) cos φ sin φ ( λ + μ) sin 

2 φ + μ

]
− v 2 cos 2 φ

[
ρ iα

−iα ρ

]
. (49)

The eigenvalues q 1 ( φ) and q 2 ( φ) of ˜ Q (φ) can be solved with the analytic expression 

q 1 ( φ) = 

1 

2 

[
λ + 3 μ − 2 ρv 2 cos 2 φ −

√ 

( λ + μ) 
2 + 4 α2 v 4 cos 4 φ

]
, (50)

q 2 ( φ) = 

1 

2 

[
λ + 3 μ − 2 ρv 2 cos 2 φ + 

√ 

( λ + μ) 
2 + 4 α2 v 4 cos 4 φ

]
. (51)

Since q 1 ( φ) < q 2 ( φ), the condition (38) can be expressed as q 1 ( φ) > 0, which results in 

| v | < 

v c 
| cos φ| , for any φ (52)

where v c is defined as the cutoff velocity, given by 

v c = 

√ 

2 μ( λ + 2 μ) 

( λ + 3 μ) ρ + 

√ 

( λ + μ) 
2 ρ2 + 4 μ( λ + 2 μ) α2 

(53)

According to Eq. (52) , the condition for identifying the surface mode is finally given by v < v c . In the non-gyro case

( α = 0 ), we obtain that v c = 

√ 

μ/ρ . Then the condition v < v c is reduced to v < 

√ 

μ/ρ , which is the well-known subsonic

range of Rayleigh wave velocity in conventional isotropic solids. 

3.2. Numerical results and discussions 

In this subsection, we discuss using numerical examples the surface state solution of the gyroscopic material system.

Specifically, we simulate the surface wave response of the semi-infinite gyroscopic medium subject to the point load at the

free surface to investigate the propagation characteristics of non-reciprocal Rayleigh waves. 

Fig. 2 shows the surface wave velocity v and the cutoff velocity v c for different values of μ/ λ in four cases α/ ρ= 0, 0.5,

1.5, and 3, where material parameters λ= 10 GPa and ρ= 10 0 0 kg/m 

3 are used. When there is no chiral coupling ( α= 0 ), the

velocities are exactly the same for Rayleigh waves traveling in two opposite directions. When α/ ρ= 0.5, the surface wave

with the positive v tends to travel faster compared to the wave toward the opposite direction, giving rise to the asymmetric

wave propagation phenomenon. When α/ ρ is increased to 1.5, the speed of the right-traveling surface wave exceeds the

cutoff value v c in the region of the relatively small μ/ λ. The surface state relevant to this regime then disappears, leading

to one-way Rayleigh waves. When α/ ρ= 3, the region of the unidirectional surface state increases. 

In order to better understand the non-reciprocal surface waves, we compute the wave response of gyroscopic elastic

medium by numerical simulations based on COMSOL Multiphysics. The gyroscopic elastic medium is modeled as a rectangle,
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Fig. 3. The wave response of gyroscopic elastic medium subject to a time-harmonic displacement of the frequency 6 kHz at the central point of the free 

surface, whose direction is represented by an arrow. The simulation results (a-d) correspond to the four cases studied in Fig. 2 where μ/ λ= 0.1 is chosen. 

The particle motion trajectory at shallow depths and polarization chart of the surface displacement are illustrated for the wave traveling to the left and 

right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in which the top boundary is the free surface and other boundaries are terminated by perfectly matched layers (PMLs)

to eliminate unwanted reflections. At the central point of the free surface, we impose a time-harmonic displacement of

frequency 6 kHz, whose direction is represented by an arrow. Choosing μ/ λ= 0.1 and the same material parameters used

in Fig. 2 , the computed scattering displacement fields shown in Fig. 3 (a-d) possess four cases of α/ ρ= 0, 0.5, 1.5, and 3,

respectively. To focus on the excited surface waves near the edge, we also plot in Fig. 3 the particle motion trajectory and

the polarization chart of surface displacements for the left- and right-traveling waves. In the non-chiral case ( α/ ρ= 0), the

responses of surface waves propagating in two opposite directions are exactly symmetric. It is evident that the particle

motion follows an elliptical trajectory, and the motion is counterclockwise for waves traveling toward the right, and vice

versa, in agreement with previous findings ( Rayleigh, 1885 ). When α/ ρ= 0.5, different polarization modes and displacement

responses at shallow depths in the two opposite directions are observed. The wave traveling to the right possesses a higher

velocity, meanwhile, the polarization ellipse is elongated horizontally. On the contrary, the wave to the left is slowed down

in speed and the polarization ellipse is shortened horizontally. The unidirectional surface state occurs in cases of α/ ρ= 1.5

and 3, where Rayleigh waves that travel to the right are no longer supported. In this scenario, the speed of waves traveling

to the left is further lowered and the polarization tends to become the transverse mode (i.e., the mode of vertical oscillations

of particles). 

4. Homogenization method of gyroscopic composite materials 

The theory presented above could be used to derive the material parameters required for achieving the non-reciprocal

Rayleigh wave. To realize the microstructure design of gyroscopic solids that meets the parameter requirement, the homog-

enization method for gyroscopic solids with the chiral inertial coupling must be established. However, it has never been

proposed previously. In this section, a generic homogenization method is proposed for retrieving all effective material pa-

rameters of gyroscopic composite materials. Effective stiffnesses and chiral densities will be provided for the lattice structure

consisting of gyroscopic cylinders embedded in an elastic matrix. Additionally, micromechanics based models are used for

predicting effective properties in the long-wavelength limit, which are compared with the results of the developed method.

4.1. Dispersion analyses of gyroscopic composite materials 

The composite structure under study is composed of a triangular lattice of cylindrical rigid body embedded into an elastic

solid. To obtain the chiral effect of the inertial motion ( Brun et al., 2012 ; Carta et al., 2014 ), each rigid cylinder is connected

to a spinning gyroscope whose axis is perpendicular to the lattice plane, as schematically shown in Fig. 4 . Consider that the
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Fig. 4. Gyroscopic composite materials: (a) Schematic of the triangular lattice of cylindrical rigid body embedded into an elastic solid; (b) Geometry of 

unit cell. The slipping boundary condition (with the motion constrained in the z -direction, while free in the x - y plane) is imposed on both top and bottom 

surfaces to ensure that the plane strain state is followed. (c) Side and top view of rigid body inclusion in a state of motion. Each rigid cylinder is connected 

to a spinning gyroscope whose bottom end is pin connected to the ground. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

periodic structure is of finite thickness, and the slipping boundary condition is imposed on both top and bottom surfaces.

Under this condition, the composite structure could follow the plane strain state. Assume that the rigid cylinder of weight

m 0 undergoes the displacement u 

cyl when subjected to the external force f ext from the matrix material. In the harmonic

case, the equilibrium equation of the rigid cylinder can be expressed as 

f ext + f gyro = −m 0 ω 

2 u 

cyl (54)

wherein f gyro represents the inertial force exerted by the spinner and satisfies u 

cyl · f gyro = 0 . The conservation of angular

momentum of the spinner gives rise to ( Brun et al., 2012 ; Carta et al., 2014 ) 

u 

cyl × f gyro = −i ω 

2 h 

−2 I zz 

∣∣u 

cyl 
∣∣2 

e z (55)

where I zz denotes the moment of inertia about the z -axis and h is the characteristic length of the spinner. The following

relations can be generalized from Eq. (55) 

f gyro = h 

−2 I zz ω 

2 

[
0 i 
−i 0 

]
u 

cyl (56)

By substituting (56) into (54) , the explicit relation between u 

cyl and f ext can be determined 

f ext = −ω 

2 m eff u 

cyl (57)

with 

m eff = 

[
m 0 i h 

−2 I zz 

−i h 

−2 I zz m 0 

]
(58)

It is shown in Eq. (57) that the rigid cylinder with the loaded gyroscope can be effectively represented by a homogeneous

body with effective mass m eff that follows the tensor form of Eq. (58) . To simplify the theoretical analysis, the cylindrical

inclusion loaded with gyros is modeled as a homogeneous material whose mass density ρ1 = [ ( ρ1 , i α1 ) , ( −i α1 , ρ1 ) ] is set in

accordance with the form of Eq. (58) , herein the spinner constant α1 is a parameter relevant to the characteristic length h

and moment of inertia I zz of the gyroscope. The Young’s modulus, Poisson’s ratio, density are taken respectively as E 1 = 195

GPa, ν1 = 0 . 28 , and ρ1 = 7700 kg/m 

3 for the inclusion, and E 0 = 2 GPa, ν0 = 0 . 41 , and ρ0 = 1100 kg/m 

3 for the matrix material.

The inclusion’s diameter is set as 1 cm, and the lattice periodicity is chosen as l = 

√ 

3 cm. 

The effective-medium method is developed based on the band structure results. For this purpose, we first examine the

band diagram of the gyroscopic structure with different spinner constants. Fig. 5 (a) shows the dispersion diagram of the

composite material with α1 = 0 , which is computed in the �X and �Y direction of the first Brillion zone. The high and low

branches in the two directions correspond to the longitudinal (L) and transverse (T) polarization states, respectively, as can

be easily recognized by the mode shapes at the frequency 5 kHz in Fig. 5 (b). When α1 = ρ1 , two dispersion branches are still

observed [ Fig. 5 (d)], but it is deduced from the modal displacement field in Fig. 5 (e) that the particle motion now follows

the elliptical trajectory as a result of the chiral coupling between the horizontal and vertical oscillation of inclusions. To

highlight this difference, the high and low dispersion branches in the case of α1 � = 0 are denoted by the quasi-longitudinal

(QL) and quasi-transverse (QT) modes, respectively. 

When the spinner constant takes the larger value, α1 = 6 ρ1 , it is deduced that the QT mode still exists, while the QL

branch disappears ( Fig. 5 g). This single-mode behavior can be mathematically explained by analyzing the phase velocity v QL

and v QT of the respective QL and QT waves in the gyroscopic continuum, which can be derived by the Stroh method as 

v QL = 

√ 

2 μ( λ + 2 μ) 

( λ + 3 μ) ρ −
√ 

( λ + μ) 
2 ρ2 + 4 μ( λ + 2 μ) α2 

(59)
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Fig. 5. The dispersion diagram of composite materials with (a) α1 = 0 , (d) α1 = ρ1 , and (g) α1 = 6 ρ1 , calculated in the �X and �Y direction of the first Bril- 

lion zone. (b,e,h) The modal displacement fields at the frequency 5 kHz for each polarization mode. (c,f,i) The isofrequency contour for the composites with 

different spinner constants. 

 

 

 

 

 

 

 

 

 

 

 

 

v QT = 

√ 

2 μ( λ + 2 μ) 

( λ + 3 μ) ρ + 

√ 

( λ + μ) 
2 ρ2 + 4 μ( λ + 2 μ) α2 

(60) 

Note that v QT has the same expression as the cutoff velocity v c in Eq. (53) . For the continuum medium that is charac-

terized by α > ρ , it is shown from Eq. (59) that v QL is purely imaginary, corresponding to the stopband of the QL mode,

while the QT mode exists since v QT is always real. As later demonstrated by the homogenization results in Fig. 6 (c) that

the composite material with the spinner constant α1 = 6 ρ1 has the effective property that satisfies α > ρ . Therefore, the QL

branch is absent in the dispersion diagram ( Fig. 5 g). 

We also calculate the isofrequency contour for the composites with different spinner constants as shown in Fig. 5 (c,f,i).

The nearly circular isofrequency line is observed in the vicinity of the � point, which demonstrates the isotropic wave

behavior of the periodic composite. 

4.2. Homogenization method of gyroscopic composite materials 

The geometry of a triangular lattice possesses two mutually perpendicular planes of symmetry consistent with the �X

and �Y directions, which correspond to orthotropic material properties. So, the homogenization relations of gyroscopic com-

posite materials are described by the elastodynamic equation with the orthotropic elasticity and tensorial density. The con-

stitutive equation that governs the orthotropic elasticity is given by [ 

σxx 

σyy 

σxy 

] 

= 

[ 

c 11 c 12 0 

c 21 c 22 0 

0 0 c 44 

] [ 

ε xx 

ε yy 

2 ε xy 

] 

(61) 

To retrieve effective constitutive parameters, i.e., c 11 , c 12 , c 21 , c 22 , and c 44 , the stress σαβ and strain ɛ αβ ( α, β= x or y )

are obtained by averaging the local modal fields over a single cell ( Cheng et al., 2017 ; Liu et al., 2011 ). Recall that in the

non-gyro case ( Cheng et al., 2017 ) the average normal stress and strain are obtained from the L mode in both �X and �Y
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Fig. 6. Effective stiffness and density calculated for three types of composite materials with (a) α1 = 0 , (b) α1 = ρ1 , and (c) α1 = 6 ρ1 . Especially for the 

composite with α1 = ρ1 , effective properties computed respectively from QL and QT dispersion modes are both given. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

directions. Thereby, the elastic constants c 11 , c 12 , c 21 , and c 22 are determined by solving the following set of equations ⎡ 

⎢ ⎣ 

〈 σxx 〉 LX 〈 σyy 〉 LX 〈 σxx 〉 LY 〈 σyy 〉 LY 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

c 11 c 12 

c 21 c 22 
0 

0 

c 11 c 12 

c 21 c 22 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

〈 ε xx 〉 LX 〈 ε yy 〉 LX 〈 ε xx 〉 LY 〈 ε yy 〉 LY 

⎤ 

⎥ ⎦ 

, (62)

where 〈 · 〉 denotes the averaging quantity. The average shear stress and strain are attained from the T branch that is

characterized by the pure shear motion. So, the shear stiffness c 44 can be estimated by the equation 

〈 σxy 〉 TX = 2 c 44 〈 ε xy 〉 TX , or 〈 σyx 〉 TY = 2 c 44 〈 ε yx 〉 TY . (63)

In contrast, the QL and QT dispersion branches displayed by the gyroscopic medium couple both longitudinal and trans-

verse motions as illustrated in Fig. 5 . Therefore, the average of the stress and strain is defined from either QL or QT branch.

This significant extension of the effective method makes it possible to retrieve all homogenization parameters of the gyro-

scopic materials from single QL or QT modal fields. For example, the shear stiffness, which was usually retrieved from the

transverse model for conventional solids, could be determined from either QL or QT mode for gyroscopic materials. On the

other hand, the macroscopic equation of inertial motion with the tensorial density follows from [
F x 
F y 

]
= 

[
ρ11 i ρ12 

−i ρ21 ρ22 

][
Ü x 

Ü y 

]
(64)

where the net force F and acceleration Ü are obtained by averaging the local fields over the elementary cell ( Cheng et al.,

2017 ; Liu et al., 2011 ). By establishing the set of equations relevant to the QL or QT branch in both �X and �Y directions,

all density parameters can be determined from ⎡ 

⎢ ⎣ 

〈 F x 〉 �X 〈 F y 〉 �X 〈 F x 〉 �Y 〈 F y 〉 �Y 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

ρ11 i ρ12 

−i ρ21 ρ22 
0 

0 

ρ11 i ρ12 

−i ρ21 ρ22 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

〈
Ü x 

〉
�X 〈

Ü y 

〉
�X 〈

Ü x 

〉
�Y 〈

Ü y 

〉
�Y 

⎤ 

⎥ ⎥ ⎦ 

(65)

Fig. 6 shows the effective properties calculated for three types of composite materials studied in Fig. 5 that have different

spinner constants α1 = 0, ρ1 , and 6 ρ1 . Note that for the case of α1 = ρ1 , effective properties are computed respectively from

QL and QT dispersion branches and are both shown in Fig. 6 (b), and the excellent agreement between these two results can

be verified. Comparing Fig. 6 (a,b,c), we observe the relation of ρ11 = ρ22 and c 11 = c 22 , which verifies the isotropic behavior.

It is found that the diagonal density is equal to the volume-averaged one at the quasistatic limit given by ρ0 c 0 + ρ1 c 1 ≈ 3080

kg/m 

3 , where c and c denote the volume fraction of the matrix and inclusion, respectively. Besides, the effective spinner
0 1 
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Fig. 7. (a) Sketch of the supercell consisting of 20 elementary cells arranged periodically along the vertical direction. The periodic boundary condition 

is applied to the direction parallel to the free surface (the top and bottom edges). (b,c,d) The computed dispersion results of bulk states (gray line) and 

surface states (symbol) linked to the top surface for composite materials with different spinner constants α1 = 0 , α1 = ρ1 , and α1 = 6 ρ1 . The effective- 

medium predictions of surface modes are shown by the dark line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

constant, ρ12 and ρ21 , also follows from the volume average law given by 0 c 0 + α1 c 1 in the long-wavelength limit, which is

calculated as 2310 kg/m 

3 when α1 = ρ1 , and 13,860 kg/m 

3 when α1 = 6 ρ1 . 

Effective stiffnesses in the non-gyro case ( Fig. 6 a) are kept nearly constant in the frequency range of interest. The non-

dispersive behavior of the effective stiffnesses remains stable even when the gyroscopic coupling α1 = ρ1 and α1 = 6 ρ1 is

introduced ( Fig. 6 b,c), proofing the decoupling between the overall deformation and spinner’s motion. This then allows us to

analytically predict the effective elastic properties of the gyroscopic composites based on the Mori-Tanaka micromechanical

method ( Mori and Tanaka, 1973 ), which was suitable for the homogenization of the particulate composite with the macro-

scopically isotropic property. Following the Mori-Tanaka model, effective bulk and shear modulus, K eff and G eff, are given by

K eff = K 0 + 

1 

3 

G 0 + 

( 4 G 0 + 3 K 0 ) ( G 1 − G 0 + 3 K 1 − 3 K 0 ) 

3 [ ( 3 + c 1 ) G 0 + c 0 G 1 + 3 ( c 1 K 0 + c 0 K 1 ) ] 
c 1 (66) 

G eff = G 0 + 

c 1 
1 

G 1 −G 0 
+ 

c 0 ( 7 G 0 +3 K 0 ) 
2 G 0 ( 4 G 0 +3 K 0 ) 

(67) 

where K j , G j are respectively the bulk and shear modulus for the matrix ( j = 0) and inclusion ( j = 1). It can be computed

from Eqs. (66) and (67) that, c 11 = K eff + G eff ≈ 7 . 1 GPa, c 12 = K eff − G eff ≈ 4 . 6 GPa, and c 44 = G eff ≈ 1 . 2 GPa, which coincide

very well with the effective elastic parameters computed with the developed method as shown in Fig. 6 . Finally, we calculate

the dispersion curves of the continuum medium having the retrieved effective parameters, which are plotted by the solid

circle in Fig. 5 (a,d,g). The excellent agreement of the dispersion results between the continuum and composite materials is

deduced, which validates the proposed homogenization method. 

4.3. Non-reciprocal Rayleigh waves in continuum and structured materials 

Now, we examine the surface states of gyroscopic composites by calculating the band structure of the supercell con-

sisting of 20 cells arranged periodically along the vertical direction. The periodic boundary condition with the Bloch wave

vector k x is applied to the direction parallel to the free surface, as shown in Fig. 7 a. The computed dispersion results of bulk

states together with surface states linked to the top surface are illustrated in Fig. 7 b,c,d for the composites with spinner

constants α1 = 0 , α1 = ρ1 , and α1 = 6 ρ1 , respectively. The branch that falls below bulk states (gray lines) represents the

surface wave, which possesses the higher k x than that of the bulk wave, as marked by the symbol. In the case of α1 = 0 , it

is seen from Fig. 7 b that the dispersion curves of surface modes are symmetric with the same secant slope as guaranteed by

the reciprocity principle. When α1 = ρ1 , asymmetric dispersion branches of surface states can be observed in two opposite

directions of the wave vector space ( Fig. 7 c). When α1 = 6 ρ1 , the composite structure supports only the one-way Rayleigh

wave that propagates to the left ( Fig. 7 d). In all cases, the effective-medium predictions of surface modes have been calcu-

lated by the use of Eq. (33) , as depicted by the solid line in Fig. 7 b,c,d. The excellent agreement between the results of the

continuum and structured materials can be verified. 

In what follows, we demonstrate the non-reciprocal Rayleigh waves by full-wave numerical simulations of the elastic

matrix with the gyroscopic inclusion. The wave responses by gyroscopic composites and their effectively homogeneous ma-

terials under a time-harmonic displacement applied on the central point of the top surface at the frequency 2 kHz are

shown in Fig. 8 . When α1 = 0 , surface waves excited near the edge can be seen and their wave responses are exactly sym-

metric in two opposite directions. Asymmetric Rayleigh waves are caused when the spinner constant α = ρ is introduced.
1 1 
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Fig. 8. The displacement responses of gyroscopic composites with periodic inclusions and their effectively homogeneous materials under a time-harmonic 

displacement (whose direction is represented by the arrow) applied on the central point of the top surface at the frequency 2 kHz in three cases: (a) α1 = 0 , 

(b) α1 = ρ1 , and (c) α1 = 6 ρ1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Particularly for the case of α1 = 6 ρ1 , the unidirectional waveforms are indeed created and in agreement with the prediction

by Fig. 7 d. In three cases, the displacement response for continuum medium and periodic composites coincides very well. 

5. Conclusion 

The gyro lattice with the mechanical quantum Hall effect has been demonstrated to possess the topologically protected

unidirectional edge state as a result of the breaking of time-reversal symmetry. In the homogenization limit, this type of

lattices can be equivalently regarded as a gyroscopic continuum medium that follows a new set of elastodynamic equations

with the Hermite mass density tensor. The motivation of our study is to provide an understanding of this unusual edge state

by setting up surface state equations for gyroscopic continua. 

In this paper, a generic theory based on the Stroh formalism was established to analyze the surface states of the gyro-

scopic medium in the most general case of anisotropic elasticity. By considering the chiral density, the Stroh formulation

was significantly modified to yield new forms of eigenvalue equations for solving surface wave speeds. The explicit ana-

lytic formulations of the theory are illustrated in the isotropic elasticity scheme. Dissimilar wave speeds in two opposite

directions are predicted, showing the excellent agreement with direct numerical simulations of the non-reciprocal wave

responses of gyroscopic elastic medium. In the reduced case, the developed theory predicts the reciprocal Rayleigh waves

when the off-diagonal gyro coupling term of the Hermite density, which is the core factor of breaking the time-reversal

symmetry, vanishes. The initially elliptical polarization mode of the particle motion at shallow depths tends to be converted

into the transverse mode as the magnitude of this coupling term increases. 

To realize the microstructure design of gyroscopic solids with the chiral inertial coupling, a generic homogenization

method that relies on the surface response to external excitation is proposed for estimating effective material parameters

of gyroscopic composite materials. The homogenization method could be used to retrieve all effective parameters of the

gyroscopic materials from modal fields of either quasi-longitudinal or quasi-transverse dispersion branch, in distinct contrast

to the previous method that can only treat the non-gyro composite with the presence of both L and T modes. In numerical

examples, effective stiffness and chiral densities are retrieved for the composite material consisting of gyroscopic cylinders

embedded in an elastic matrix. The non-reciprocal wave responses of gyroscopic composites with periodic inclusions and

their effectively homogeneous materials are in good agreement for various spinner constants of gyroscopic cylinders. 
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