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a b s t r a c t

Strong nonlinearity usually becomes noticeable when nonlinear materials or structures
undergo large deformation. However, we present here the inverse nonlinearity, where
the nonlinearity is inversely proportional to the deformation. We demonstrate this peculiar
behavior in a nonlinear metamaterial beam, which is endowed with an array of piezoelec-
tric patches shunted with nonlinear digital oscillators. The nonlinear digital oscillator is
physically suggested by coding digital controllers to form an effective nonlinear capacitor,
which is connected to an analog inductor. We also analytically interpret this inverse non-
linearity through the effective bending stiffness of the metamaterial beam. It is found that
the vibration attenuation bandwidth of the nonlinear metamaterial beam under small-
amplitude excitations is three times larger than that under relatively large-amplitude exci-
tations. Thanks to the programmability of digital circuits, the nonlinear oscillators can be
easily tuned with various nonlinearities, making vibration control adaptable in both pen-
etration strength and frequency bands. The nonlinear metamaterial beam enlarges vibra-
tion control in both frequency and amplitude domains and sheds lights on broadband
low-intensity sound and micro-vibration control.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear springs that display a nonlinear relationship between force and displacement are fundamental elements in
nonlinear mechanical structures and systems. This nonlinear relationship can be approximately described by a polynomial
function with order n greater than 1 to characterize nonlinearity. In general, for naturally occurring materials, n = 3 is the
most popular choice, which provides good approximations on force and displacement relations when the spring experiences
large deformation. In this situation, the relation between force and displacement increasingly diverges from its linear rela-
tion when the deformation becomes larger. As a result, the spring can be considered as a linear spring if the deformation is
sufficiently small, and nonlinearity arises only for relatively large deformation. In other words, ‘‘Nonlinearity” is proportional
to deformation. On the other hand, there exists, at least mathematically, another choice of nonlinear characterization, i.e.
n = 1/3. For this choice, the nonlinear relation between force and displacement increasingly converges to the linear relation
when the deformation becomes larger. ‘‘Nonlinearity” only arises for sufficiently small deformation and is inversely propor-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2021.107826&domain=pdf
https://doi.org/10.1016/j.ymssp.2021.107826
mailto:zxd_zhang@hnu.edu.cn
mailto:yc896@missouri.edu
mailto:wangg@hnu.edu.cn
https://doi.org/10.1016/j.ymssp.2021.107826
http://www.sciencedirect.com/science/journal/08883270
http://www.elsevier.com/locate/ymssp


X. Zhang, H. Yu, Z. He et al. Mechanical Systems and Signal Processing 159 (2021) 107826
tional to the deformation. In this study, we call such behavior ‘‘inverse nonlinearity”. However, inverse nonlinearity has
obtained little or no attention, largely because existing materials developed to date usually cannot display this property.

Mechanical metamaterials, artificial composites[1,2], exhibit unusual mechanical properties not appeared in nature, i.e.
negative mass density, negative modulus, or negative Poisson’s ratio, et al. Mechanical metamaterials have enabled a range
of promising applications included but not limited in acoustic/elastic wave suppression and attenuation[3–11], negative
refraction[12–14], topological insulators[15–17], and cloaking[18–20]. Introducing a nonlinear degree of freedom into meta-
material designs has recently been proved as an appealing solution for achieving broadband low-frequency wave/vibration
mitigation[21–23]. When waves passing through nonlinear acoustic metamaterials, bifurcations[24–26], chaotic bands
[27,28], and amplitude-dependent bandgaps[29,30] can arise. In previous studies, nonlinearities considered in mechanical
metamaterials are proportional to deformation. How to design a mechanical metamaterial that can display inverse nonlin-
earity, and how inverse nonlinearity provides striking engineering solutions in wave and vibration control have never been
explored before.

Here, inspired by the piezoelectric shunt technique[31–39], we design a nonlinear metamaterial beam attached by an
array of piezoelectric patches that are shunted with nonlinear digital oscillators. The nonlinear digital oscillator contains
a linear inductor and a nonlinear capacitor connected in parallel. The nonlinear capacitor manifests an inverse nonlinear
relationship between the charge and voltage in the electrical domain, which in turn enables an inverse nonlinear relationship
between the stress and strain in the mechanical domain of the metamaterial through the electromechanical coupling. The
metamaterial, therefore, exhibits inverse nonlinearity. We show analytically, numerically, and experimentally that the vibra-
tion attenuation bandwidth of the nonlinear metamaterial under small-amplitude excitations is three times large than that
with relatively large-amplitude excitations, due to the inverse nonlinearity. The proposed nonlinear metamaterial provides a
new way in tailoring of mechanical nonlinearity, i.e. through digital electrical circuits. Potential applications may include
broadband micro-vibration suppression for spacecraft or precise instruments.

2. Design of a metamaterial beam with inverse nonlinearity

Fig. 1 shows the schematic of a metamaterial beam with inverse nonlinearity. To construct the metamaterial, an array of
piezoelectric (lead zirconate titanate, PZT) patches are bonded on one side of the host beam. Each of the patches is shunted
with a nonlinear digital oscillator composed of a nonlinear capacitor and a linear inductor (Fig. 1a).

2.1. Design and analysis of the nonlinear digital oscillator

In the study, we consider a voltage-controlled nonlinear capacitor for the nonlinear digital oscillator. The relationship
between the electric charge qc and the voltage u0 of the capacitor is assumed as
Fig. 1.
cell.
qc ¼ C
�
Nu

1
3
0 ð1Þ
where C
�
N denotes the nonlinear capacitance. Equation indicates the inverse nonlinearity. Note that this form can be easily

realized by a digital control circuit. According to the Kirchhoff’s law, the electrical governing equation of the PZT patch
shunted with the nonlinear oscillator with a charge source (see Fig. 2a) reads
Design of the nonlinear metamaterial beam: (a) The metamaterial beam with periodic unit cells; (b) Detailed illustration of the metamaterial unit
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Fig. 2. (a) Representative circuit of a PZT patch shunted with a nonlinear oscillator. (b, c) Frequency responses of the representative circuit excited by a
current source: (b) Amplitude; (c) Phase angle.
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d2Q
dt2

¼ Cp
d2u0

dt2
þ C

�
N

d2 u
1
3
0

� �
dt2

þ u0

L
ð2Þ
where Cp denotes the capacitance of the PZT patch with free boundary conditions, L represents the inductance of the linear
inductor, and Q is the charge flowed from the current source. To find frequency responses of the nonlinear electrical circuit,
harmonic balance method[40] is applied. We assume the excitation Q = Q0cos(ixt), and the solution u0 = U0cos(ixt). At the
fundamental order, equation becomes
Q0 ¼ CpU0 þ 4
3
CNU0

� �1
3

� U0

x2L
ð3Þ
Given Q0 in equation at different frequencies, frequency responses of U0 can be obtained.
Fig. 2b and c show the frequency responses of the nonlinear circuit system calculated based on equation. Fig. 2b illus-

trates the amplitudes of U0, and Fig. 2c shows its phase angles. In the calculations, Cp = 80 nF, L = 1.2H, and CN = -1 � 10-
24 C3�V�1. Frequency responses of the corresponding linear system (CN = 0) are also plotted in Fig. 2b and c for comparison
(dotted curves). It can be seen from the figures that, for the linear circuit, unique solutions of frequency responses exist over
the entire frequency range. When the excitation frequency reaches to the resonant frequency of the system, the magnitude
of the response approaches to infinity, and the phase angle jumps from -p to 0. In general, if the excitation, Q0, and the
response, U0, of the electrical circuit are out-of-phase, and, at the same time, the response amplitude is large enough, the
metamaterial can attenuate flexural waves or vibrations and generate a band gap at those frequencies through electrome-
chanical coupling[41]. As a consequence, the band gap produced by the linear resonant circuit is usually found at frequencies
slightly lower than the resonance frequency of the circuit[42,43]. On the other hand, in the presence of nonlinearity (CN =
�1 � 10-24 C3�V�1), multiple solutions of frequency responses survive in some frequency regions, dictated by equation. As
an illustration, frequency responses with Q0 = 3 � 10-9, 4 � 10-9 and 5 � 10-9C are shown in the figures by three curves with
different thicknesses. When Q0 = 3 � 10-9C, three different modes of U0 are formed at frequencies from 540 to 610 Hz. That is
to say when the excitation frequency of Q0 is within this frequency range, it can generate three possible modes of U0 at its
3
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excitation frequency. Note that two of the three modes have much stronger responses than the other mode, and the phase
angle of one of the two modes is equal to -p. This indicates the nonlinear metamaterial is capable of attenuating flexural
waves or vibrations over this frequency region, which we show in the next section. As can be seen from the figure, the atten-
uation frequency region due to nonlinearity is much larger than that with the linear circuit, even though it moves slightly to
higher frequencies. In addition, by increasing the magnitude of Q0 to 4 � 10-9 and 5 � 10-9C, the frequency region where the
number of solutions tripled becomes narrower. This phenomenon is in qualitative agreement with the inverse nonlinearity
suggested in the study.

2.2. Linearization: Effective bending stiffness and band structure

The effective elastic parameters are necessary for theoretical analysis of band structure as well as the dispersion proper-
ties of the metamaterials. The same goes for nonlinear metamaterials, whereas the linearization for nonlinearity is necessary.
Despite of the imprecision in linearization of strong nonlinearity, it can still help with qualitative understanding of the
dynamic behavior of the nonlinear metamaterials. Therefore, a qualitative study is performed to explore effective elastic
parameters of the proposed metamaterial.

Base on the relationship between the qc and u0 of the nonlinear capacitor given in equation (1), the effective capacitance
can be written as:
Ceff ¼ dqc

du0
¼ 1

3
C
�
NU

�2
3

0 ð4Þ
where U0 denotes the amplitude of the excitation voltage. The electrical charge–voltage relation in the frequency domain
reads
Q0 ¼ Ceff U0 � U0

x2L
ð5Þ
The constitutive relations of the PZT patch in a beam model can be simplified as [36]
S1
D3

� �
¼ SE11 d31

d31 eT33

" #
T1

E3

� �
ð6Þ
where S1 (T1) denotes the normal strain (stress) along the x-direction, and D3 and E3 represent the electric displacement and
electric field intensity, respectively. SE11, eT33 and d31 are the compliance coefficients at constant electric field, dielectric con-
stant at constant strain and piezoelectric constant, respectively. The relations between bending curvature 1/q and strain S1
can be read
1
q
¼ 2S1

hb
ð7Þ
Combining equations (4) to (7), the linearized effective bending stiffness of the metamaterial beam can be obtained as
Deff ¼ Ip
SE11

1� x2d2
31LAs

SE11hpð1�x2LCp � 1
3x2LC�

NU
- 2

3
0 Þ

0
@

1
Aþ EbIb ð8Þ
The relations between the U0 and 1/q can be solved from
Cp þ 1
x2L

� �
U0 � C

�
N

3
U

1
3
0 þ

d31hb

2qð32=3SE11Þ
¼ 0 ð9Þ
where Ip ¼ lp½ðhb þ 8hpÞ3 � h3
b �=24 and Ib ¼ lph

3
b=24 are the moment of inertia of the PZT patch (beam) and Eb is the Young’s

modulus of beam. We can see from equations and that the effective bending stiffness Deff is in function of both the frequency
x and the bending curvature 1/q.

Fig. 3a shows the effective bending stiffness of the nonlinear metamaterial beam at different frequencies with different
amplitudes of bending curvatures. Geometric and material parameters of the metamaterial beam are listed in Table 1. In the
absence of the nonlinear capacitor (dashed curve), the effective bending stiffness show a resonance behavior, where the
effective bending stiffness becomes negative from 491 to 502 Hz. Negative effective bending stiffness usually indicates
wave/vibration attenuation in that frequency region[34,35]. In the presence of the nonlinear capacitor, the frequency region
of negative effective bending stiffness depends also on the excitation amplitude. For example, when 1/q = 5 � 10-10, that
frequency range is increased and made up a much large region from 571 to 599 Hz. Increasing the amplitude of bending cur-
vature to 2� 10-9 and 3� 10-9, that frequency region is however reduced and narrowed to 526–544 and 508–524 Hz, respec-
tively. Fig. 3b summaries this behavior with more amplitudes of bending curvature calculated. Each vertical line with two
short bars on both ends denotes the frequency regions of negative effective bending stiffness. From the figure, we find weak
excitations produce broader frequency regions of negative effective bending stiffness, whereas, strong excitations do the
4



Fig. 3. (a) Linearized frequency-dependent effective bending stiffness of the nonlinear metamaterial beam with different amplitudes of excitation bending
curvatures. (b) Frequency regions of negative effective bending stiffness with different amplitudes of excitation bending curvatures.
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inverse, making the responses convergent to linear metamaterials. The shown behavior displays inverse nonlinearity. There-
fore, the suggested nonlinear metamaterial is particularly useful for low-intensity sound control and micro-vibration
attenuation.

2.3. Numerical approach for vibration analysis

To quantify how the resonant shunting circuits with inverse nonlinearity manages the vibration suppression of the meta-
material beam, we develop a numerical approach based on the finite element method. Due to the small width to length and
thickness to length ratios of the metamaterial beam, it could be sufficiently accurate by applying Euler–Bernoulli beam
assumptions in a one-dimensional setting. According to the standard finite element procedures provided in Ref. [44,45],
the discretized piezoelectric-structural coupled equations of motion can be written in terms of nodal displacement and nodal
electric potential as
Table 1
Geomet

Alum

PZT
M 0
0 0

� �
€u
€V

� �
þ Ku Kc

KT
c KV

� �
u
V

� �
¼ f

q

� �
ð10Þ
ric and material parameters of the aluminum beam and PZT patches.

Parameter Symbol Value

inum beam Length lb 1200 mm
Width wb 40 mm
Thickness hb 3 mm
Modulus Eb 69.5 GPa
Density qb 2700 kg�m�3

patches Length lp 40 mm
Width wp 40 mm
Thickness hp 0.5 mm
Density qp 7600 kg�m�3

Compliance coefficient SE11 1.8 � 10-12m2�N�1

Piezoelectric strain constant d31 �101 � 10-12C�N�1

Dielectric constant eT33 1.8 � 10-8F�m�1
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where u and V represent the nodal displacement and nodal electric potential of a piezoelectric beam element, f and q denote
the external force applied and free charge flowing into the nodes, respectively. Detailed expressions of the mass, stiffness,
piezoelectric capacitance and piezoelectric coupling matrices (M, Ku, KV and Kc, respectively) can be found in Ref. [45].

The nonlinear electrical shunting circuit controls the electrical boundary condition of the piezoelectric beam, such that
the relation between q and V reads
d2q
dt2

¼ V
L
þ C

1
3
N

d2 V
1
3

� �
dt2

ð11Þ
Taking double derivative with time to the last equation of equation (11), and substituting equation into it, equation (10)
becomes
M 0
KT

c KV

� �
€u
€V

� �
þ Ku Kc

0 �1=L

� �
u
V

� �
�

0

C
1
3
N

€
V
�

" #
¼ f

0

� �
ð12Þ
where V
�
¼ V

1
3. To solve equation (12), we can employ the harmonic balance method (HBM) [46–49] together with the

Newton-Raphson method[27,28,50] with given external loadings in a finite nonlinear metamaterial beam.
The HBM is an effective method in solving weak and strong nonlinear problems[40,51–53], and the first order approxi-

mation is commonly adopted in almost all cases[22,27,54]. Applying the HBM with the first order approximation (i.e. the
first-order HBM), we can firstly assume that the steady response has the form as:
u ¼ u1sinðxtÞ þ u2cosðxtÞ
V ¼ v1sinðxtÞ þ v2cosðxtÞ
qn ¼ a1sinðxtÞ þ a2cosðxtÞ

8><
>: ð13Þ
where x is the angular frequency. u1(2), v1(2) and a1(2) are harmonic components of the nodal displacement u, nodal electric
potential V and the charge of the nonlinear capacitor qn, respectively. According to equation (1), the components of V can be

expressed as: v1 ¼ 3
4 a31 þ a1a2

2

� 	
v2 ¼ 3

4 a32 þ a2a2
1

� 	

(14)

Therefore, the first-order HBM leads to the system governed by algebraic equations:
- x2M þ Ku Kc

- x2KT
c - x2KV � 1=L

" #
u1

v1

� �
þ 0

x2ð43CNÞ
1
3

" #
0

v1ðv2
1 þ v2

2Þ
�1
3

� �
¼ f

0

� �

- x2M þ Ku Kc

- x2KT
c - x2KV � 1=L

" #
u2

v2

� �
þ 0

x2ð43CNÞ
1
3

" #
0

v2ðv2
1 þ v2

2Þ
�1
3

� �
¼ 0

0

� �

8>>>>><
>>>>>:

ð15Þ
The solution of equation (15) describes all the responses including u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1 þ u2

2

q
under certain excitations f.

As discussed before, strong nonlinearity may occur when the amplitude of excitation is small. To validate the accuracy of
the first-order HBM, we also attempt to increase the harmonic orders to obtain more accurate results. Given that the third
harmonic term is usually one of the main harmonic forms for the odd system, the HBM equations with the third-order
approximation are also derived here. Similar to the above, assuming that the third-order approximate steady response
has the form:
u ¼ u1sinðxtÞ þ u2cosðxtÞ þ u3sinð3xtÞ þ u4cosð3xtÞ
V ¼ v1sinðxtÞ þ v2cosðxtÞ þ v3sinð3xtÞ þ v4cosð3xtÞ
qn ¼ a1sinðxtÞ þ a2cosðxtÞ þ a3sinð3xtÞ þ a4cosð3xtÞ

8><
>: ð16Þ
Thus, V can be expressed as:
v1 ¼ 3
4CN

a31 þ a1a22 � a21a3 þ a22a3 þ 2a1a23 � 2a1a2a4 þ 2a1a24
� 	

v2 ¼ 3
4CN

a1a22 þ a32 þ 2a1a2a3 þ 2a2a2
3 � a21a4 þ a22a4 þ 2a2a24

� 	
v3 ¼ 3

4CN
� 1

3 a
3
1 þ a1a22 þ 2a21a3 þ 2a22a3 þ a33 þ a3a24

� 	
v4 ¼ 3

4CN

1
3 a

3
2 � a21a2 þ 2a21a4 þ 2a22a4 þ a34 þ a23a4

� 	

8>>>>><
>>>>>:

ð17Þ
Therefore, the corresponding algebraic equations read:
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- x2M þ Ku Kc

- x2KT
c - x2KV � 1=L

" #
u1

v1

� �
þ 0

x2a1

� �
¼ f

0

� �

- x2M þ Ku Kc

- x2KT
c - x2KV � 1=L

" #
u2

v2

� �
þ 0

x2a2

� �
¼ 0

0

� �

- 9x2M þ Ku Kc

- 9x2KT
c - 9x2KV � 1=L

" #
u3

v3

� �
þ 0

9x2a3

� �
¼ 0

0

� �

- 9x2M þ Ku Kc

- 9x2KT
c - 9x2KV � 1=L

" #
u4

v4

� �
þ 0

9x2a4

� �
¼ 0

0

� �

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð18Þ
By solving the combination of equations (17) and (18), the responses based on the third-order HBM can be obtained.
Fig. 4 illustrates the calculated system responses based on the first-order HBM and the third-order HBM when only one

cell in the beam works. As we can see from Fig. 4a, when a small excitation (F = 0.02 N) is applied to the metamaterial beam,
the vibration suppression band in the first-order HBM case locates from 493 Hz to 522 Hz, while that corresponding the
third-order HBM case is almost the same(from 494 Hz to 521 Hz). While the amplitude of excitation is increased (e.g. to
0.5 N), good matching can always be found between both results calculated with the first-order and the third-order HBM.
More generally, Fig. 4b validates the first-order and the third-order HBMs by comparing the calculated upper and lower
boundaries of the attenuation frequency regions with different excitations. It can be seen that the results coincide well. Dif-
ferent from the normal nonlinear case, stronger nonlinearity occurs with smaller excitations. Thus, excitation with ampli-
tude too small will lead to nonlinearity that is too strong, which could cause converge failure and unreasonable results.
In our case, good convergence maintains for all excitations with amplitude larger than 0.02 N, while the results calculated
with the first-order and the third-order HBM matches well. Thus, to simplify the complexity of calculation, subsequent
numerical results will be calculated using only the first-order HBM, and the validity is guaranteed when the excitation is
restrained within F � 0.02 N.
3. Experimental demonstration

To experimentally test vibration responses of the nonlinear metamaterial beam, we fabricate the metamaterial beamwith
4 unit cells (Fig. 5a). In experiments, one end of the metamaterial beam is fixed to an electromagnetic shaker and the other
(a) The frequency responses considering the first-order and the third-order harmonic with excitations F = 0.5 N and 0.02 N. (b) The upper and lower
ry frequencies of vibration suppression of the nonlinear metamaterial beam with different amplitudes of excitations, which are calculated based on
t-order and the third-order HBM respectively.
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Fig. 5. (a) Experimental setup of vibration tests of the nonlinear metamaterial beam. (b) High-level schematic of the nonlinear oscillator. (c) Circuit diagram
of the analog inductor. (d) Illustration of the realization of the nonlinear capacitor with a controlled voltage source. (e) Circuit diagram of the nonlinear
capacitor realized by a digital controller.
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end is left free. Two accelerometers are attached on both ends of the metamaterial beam to measure its frequency responses.
All the geometric and material parameters used in experiments are the same as those in the simulations listed in Table 1.

The nonlinear oscillator consists of a nonlinear capacitor and a linear inductor connected in parallel (Fig. 5b). The linear
inductor is designed by a synthetic analog circuits (Fig. 5c) [35]. The nonlinear capacitor is realized by a digital controller. The
mechanism can be understood from Fig. 5d. Consider the digital controller as a voltage source, ec, which is connected to a
reference capacitor, C. The relationship between input voltage, u0 and the output voltage, ec reads
u0 ¼ qc

C
þ ec ð19Þ
Combining equations (1) and (19), we have
ec ¼ u0 � C
�
N � u1

3
0

C
ð20Þ
Digital controller can be easily tuned in order to generate various dynamic characteristics by programing[34]. Nonlinear-
ity, as one interesting behavior, can also be realized by them. To implement the relation indicated by equation (20), we
design and implement a digital control unit. It consists of an input amplifier A1 (OP07CP), a microcontroller (STM32F446)
with embedded ADCs and DACs, and an output amplifier A2 (OP07CP) (see Fig. 5e). In particular, the input amplifier A1 is
employed to measure the voltage u0. The measured analog voltage signal is digitalized by the ADC, and then fed to the micro-
controller for real-time computation. The DAC converts the output digital signal from the microcontroller to an analog signal
and pass it to the output amplifier A2. The amplifier A2 applies the voltage ec to the reference capacitor and the digital con-
trol unit effectively functions as the nonlinear capacitor after coding the microcontroller according to equation (20). Detailed
parameters of the analog and digital circuits are given in Table 2.The charge–voltage relation of the nonlinear capacitor is
tested using MATLAB Simulink (Fig. 6). The solid curve in Fig. 6 represents the result calculated with the time-domain sim-
Table 2
Circuital parameters of the nonlinear oscillator.

Symbol Value

Inductor R1 10 KX
R2 0 ~ 100 KX
R3 10 KX
R4 10 KX
C1 33 nF

Digital capacitor C 18 nF

8



Fig. 6. Charge-voltage relationship of the digital nonlinear capacitor calculated based on analytical and numerical approaches.
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ulations based on MATLAB Simulink, while the dashed curve is plotted according to equation (20). In the study, CN = -1 � 10-
24 C3�V�1. It can be clearly seen that the two results have very good agreement and demonstrate the inverse nonlinearity. The
proposed digital controller is ready to be implemented into the nonlinear metamaterial beam for vibration tests.

There are also practical limitations about the nonlinear metamaterial beam in experiments. On the one hand, there
always exist electromagnetic interference caused by other electronic devices and background noise, so the voltage measured
by ADC can be a few millivolts even without excitation. Moreover, the resolution of ADC and DAC cannot be infinitely small
(e.g. no less than 0.8 mV in our instruments). Taking these factors into consideration, the excitation power should not be
lesser than 1 W to ensure that the measured voltage amplitude from ADC cannot be lower than 10 mV.

On the other hand, the value of the negative effective capacitance should not be too close or larger than the inherent
capacitances of PZT patches in order to avoid any instability of the whole system. According to equation (20), the value of
the effective capacitance is thus restrained to be larger than �70 nF in our experiment.

Fig. 7 shows the frequency responses of the nonlinear metamaterial beam with different excitation amplitudes. In all the
sub-figures of Fig. 7, the dashed and thick solid curves are from experimental measurements, and the other two curves are
from numerical simulations. In experiments, we apply white noise excitations to the point ‘‘A” of the beam through an elec-
tromagnetic shaker, and measure frequency responses from the point ‘‘B” on the beam using an accelerometer. Numerical
simulations are performed based on the same setup and calibrated with experiments. Note that in numerical simulations
we use the same force excitation over the entire frequency region, which has shown reasonable agreement with experimen-
tal measurements. For comparisons, frequency responses of the metamaterial beam with linear resonant circuits are plotted
in Fig. 7c. As shown in this figure, the second resonance peak of the metamaterial beam without the circuits can be effec-
tively attenuated producing a clear dip at frequencies from 470 to 520 Hz. Good agreement between numerical and exper-
imental results is clearly seen. By enabling nonlinear capacitors in the resonance circuits, the metamaterial beam displays
nonlinearity. In Fig. 7a, we apply a small excitation to the metamaterial beam with the output power from the amplifier
being around 2 W among all frequencies and left other circuit parameters the same as those in Fig. 7. We find the vibration
attenuation frequency region is enlarged occupying frequencies from 470 to 650 Hz, almost three times wider than the linear
case. By increasing the excitation power of the amplifier to almost 20 W, the wave attenuation frequency region shrinks to
almost the linear case, demonstrating inverse nonlinearity. Good agreement between numerical and experimental results of
the nonlinear metamaterial beam is clearly seen again.

To clearly show how the vibration suppression frequency region changes with different excitation amplitudes of the
metamaterial with inverse nonlinearity, Fig. 8 plots numerically calculated frequency regions with tens of different excita-
tions. In this paper, the frequency region of vibration suppression is defined as: within which the frequency response of
vibration is below 0 dB. In Fig. 8, the vibration suppression frequency region of the proposed metamaterial with the inverse
nonlinearity is represented as the vertical lines (with 2 short bar on both ends for each vertical line), while the region cor-
responding to the linear case (when the nonlinear capacitor is absent) is marked as the shaded region. As shown in the figure,
when decreasing amplitudes of excitations, the vibration attenuation frequency region moves to higher frequencies and
occupies much broader frequency regions. When the amplitude of excitations is greater than 0.1 N, the nonlinear metama-
terial behaves as a linear metamaterial. All these phenomena once again indicate the inverse nonlinearity of metamaterial
beam developed in this study.

The vibration attenuation frequency region can also be flexibly tuned by implementing different circuit parameters. For
example, in Fig. 9, we select L as 0.95H. The wave vibration attenuation frequency regions are tuned to 575–720 Hz and 575–
600 Hz with the excitation power being about 2 W and 20 W, respectively.
4. Conclusion

In the study, we design a nonlinear metamaterial beam with inverse nonlinearity that has never been explored before. In
the design, we mount an array of piezoelectric patches on a beam and shunt them with nonlinear digital oscillators. In par-
9



Fig. 7. (a, b) Frequency responses of the nonlinear metamaterial beam from experimental measurements and numerical simulations with different
excitations: (a) P = 2 W; (b) P = 20 W. (c) Frequency responses of the linear metamaterial beam from experimental measurements and numerical
simulations.

Fig. 8. Frequency regions of vibration suppression of the nonlinear metamaterial beam with different amplitudes of excitations.
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Fig. 9. Experimentally measured frequency responses of the detuned nonlinear metamaterial beam with L = 0.95H: (a) P = 2 W; (b) P = 20 W.
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ticular, the nonlinear digital oscillator allows an inverse nonlinear relationship between the stress and strain of the metama-
terial. Through analytically, numerically, and experimentally studies, we show the negative stiffness and the vibration atten-
uation bandwidth of the nonlinear metamaterial under small-amplitude excitations is larger than that with relatively large-
amplitude excitations, thanks to the inverse nonlinearity. Effective material parameters of the metamaterial and the wave
attenuation region can be easily and flexibly tuned by coding the microcontrollers, making the metamaterial able to adapt
with excitations.
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