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ABSTRACT

Unlike the holography technique using active sound source arrays, metasurface-based holography can avoid cumbersome circuitry and only
needs a single transducer. However, a large number of individually designed elements with unique amplitude and phase modulation capabili-
ties are often required to obtain a high-quality holographic image, which is a non-trivial task. In this paper, the deep-learning-aided inverse
design of an acoustic metasurface-based hologram with millions of elements to reconstruct megapixel pictures is reported. To improve the
imaging quality, an iterative compensation algorithm is proposed to remove the interference fringes and unclear details of the images. A
megapixel image of Mona Lisa’s portrait is reconstructed by a 2000� 2000 metasurface-based hologram. Finally, the design is experimentally
validated by a metasurface consisting 30� 30 three-dimensional printed elements that can reproduce the eye part of Mona Lisa’s portrait. It
is shown that the sparse arrangement of the elements can produce high-quality images even when the metasurface has fewer elements than
the targeted image pixels.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0136802

INTRODUCTION

Holography is a promising technology for wave field reconstruc-
tion. It has many applications such as volumetric displays,1 ultra-high-
density data storage,2 optical3 or acoustic4 tweezers, optical5 or acoustic
imaging,6 acoustic suspension,6,7 and biomedical engineering,8,9 etc.
Acoustic holography, as one representative holographic technique, has
attracted considerable attention from both scientists and engineers in
many fields. Conventional acoustic holography uses active phased
arrays, which require many transducers with cumbersome phase-
shifting circuits. Recently, metasurfaces, a two-dimensional equivalent
of metamaterials with subwavelength microstructures, have emerged as
a promising holographic technique in both fields of optics10 and acous-
tics.11,12 Metasurfaces can reduce system complexity as only a single
source transducer is needed to achieve a desired scattered field based on
either phase modulation (PM) or phase-amplitude modulation (PAM).

The PMmethod was applied by Melde et al.7 and Xie et al.13 in 2016 to
design metasurface-based holograms for acoustic holographic imaging,
and later by Bakhtiari-Nejad et al.14 for generating a multifocal pressure
pattern with waterborne ultrasound. The PAM technique can be real-
ized through an elaborate design of a composite element which
includes two parts modulating phase and amplitude independently.11,15

Tian et al.,16 Zhu et al.,17 and Fan et al.18 used this strategy to design
transmissive16 and reflective17,18 metasurface-based holograms for
acoustic imaging. Although it offers more freedom by controlling both
the amplitude and the phase, the design of a metasurface-based holo-
gram with decoupled (or quasi-decoupled) PAM is subject to its micro-
structure configuration and size with possible lack of precision and
flexibility. Differently, Zhang et al.19 introduced a modified weighted
Gerchberg–Saxton algorithm to design monolithic acoustic holograms
with consideration of PAM. A nine foci pattern and an image of the
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letter “U” were shown by a 2MHz transducer attached to the holo-
grams with the designed thickness profiles. Brown20 used two phase
holograms to modulate both the phase and amplitude of an incident
acoustic wave and generated letters “UCL” experimentally. The holo-
gram thickness profiles were designed using an optimization method.
The PAM technique was also applied to design multiplexed acoustic
metasurface-based holograms.21,22 Generally, the PAM can provide a
larger design space for metasurface-based holograms than the PM.
However, one difficulty is that one must find a series of functional ele-
ments, which can modulate phase and amplitude simultaneously. This
issue is more prominent when many elements are involved.

Although some studies on metasurface-based holography have
been reported, the merit has not been fully exploited due to the limita-
tion of resolution and PAM precision of the proposed metasurfaces.
Intuitively, the number of metasurface elements (pixels), which defines
the resolution of the metasurface, is crucial to obtain complex holo-
graphic imaging with high resolution. As an example, we demonstrate
the holographic images (Fig. 1) of a Quick Response code (QR-code)
containing 100 words [as shown in Fig. 1(a)] by the metasurfaces with
different numbers of elements. The images are displayed as the acous-
tic pressure distributions and the detailed calculations are presented in
Fig. S3 in the supplementary text S2. It is noted that the image
[Fig. 1(f)] by the metasurface with 500� 500 elements [Fig. 1(d)] is
recognizable (i.e., the QR-code image can be scanned and then trans-
lated into the presupposed characters), while the image [Fig. 1(e)] by
the 120� 120 metasurface [Fig. 1(c)] is unrecognizable. As shown in
Fig. 1(b), a larger number of metasurface elements is required for
more words. That is to say, a high-quality metasurface-based holo-
gram needs a huge number of elements with precise PAM. This may
be understood by considering the following facts. On the one hand, a
higher resolution is required for compiling more words in a binary
picture (as displayed in Fig. S4 in the supplementary text S2). On the
other hand, realizing the binary holography image with N�N pixels

means that the number of elements in the acoustic metasurface needs
to be increased to render a more complex image. Therefore, when the
number of metasurface elements increases, the number of resulting
recognizable words by the metasurface-based holography also
becomes larger as well. It is worth noting that while a positive correla-
tion exists between the number of metasurface elements and the length
of recognizable words, there is no explicit relation (e.g., a formula or a
limit) that can be found based on the current data.

However, it is usually more challenging to have a large quantity
of elements while in the meantime achieving great precision.
Conventional approaches either cannot achieve this or need a very
tedious design process. For instance, optimization methods have
been successfully applied to the inverse design of acoustic metasur-
faces,23,24 but usually require a lot of computing resources and time
costs if thousands of elements are designed. Recently, deep learning
(DL), a kind of machine learning method based on artificial neural
networks,25 has been applied in the design of optical metasurfa-
ces,26–29 acoustic metasurfaces,30–33 non-photonic devices,34 and
even holographic image generation.35,36 However, data-driven mod-
els for inverse problems remain largely unexplored in terms of effi-
ciency and capability, especially in the context of acoustic
metasurface-based holography with megapixel resolution. For
instance, simultaneous amplitude and phase control is rarely studied
in DL-based models.37 Other inverse design approaches also suffer
from poor efficiency and cannot achieve the rapid design of numer-
ous elements with target responses.

On the other hand, the full potential of metasurface-based holog-
raphy has yet to be realized. Generally, the loss of information during
reconstruction is mainly caused by the limited metasurface size, discre-
tization of the acoustic field, and diffraction limitations. If the metasur-
face is not sufficiently large, the image quality may be suppressed
because of incomplete information. When the holographic data are
discretized, the holography image will inevitably become suboptimal

FIG. 1. Effects of the metasurface resolu-
tion on the hologram quality. (a) The target
binary image of a QR-code containing infor-
mation of 100 words. (b) Diagram illustrat-
ing the number of required elements to
create a recognizable image as a function
of reproducible words, demonstrating a
positive correlation between metasurface
elements and recognizable words. The
100-word target image cannot be created
by a 120� 120 metasurface but can be
created by a 500� 500 metasurface.
Using the metasurface with different-scale
elements, different numbers of recognizable
words can be obtained through the hologra-
phy image. (c), (d) Diagrams of the meta-
surfaces designed using the DL method
with (c) 120� 120 elements and (d)
500� 500 elements. (e), (f) Corresponding
holographic images from a metasurface
with (c) unrecognizable and (d) recogniz-
able resolutions, respectively. The details
about the scanning device are shown in the
supplementary text S2.
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compared to that from continuous data. In addition, the intrinsic
diffraction limitations can restrict the resulting imaging resolution.
The ability to rapidly construct unit cells with unique PAM and com-
pensate for the information loss during metasurface design is desired
to promote the application of metasurface-based holograms.

This paper proposes a DL-based high-definition acoustic meta-
surface optimization method to achieve high-quality holographic
reconstructions. The capacity of the approach is manifested by a
megapixel image where it is shown the deep neural network (DNN)
method combined with the genetic algorithm (GA) can accelerate the
convergence of the inverse design of elements. This enables one to
design millions of highly customized elements with high precision of
PAM in a few hours. The element topology exhibits a bi-anisotropic
feature that can address the requirement of fully controllable phase
and amplitude.38 An iterative algorithm of the phase-amplitude distri-
bution optimization is developed to make more efficient use of mil-
lions of bi-anisotropic elements. Several demonstrations are presented
to show how DL aids the rapid custom designs of acoustic
metasurface-based holograms. In addition to the aforementioned
holograms for QR-code images to show how the number of pixels
affects the hologram performance, designs for imaging of Tianjin
University logo are also presented to discuss proper spatial relation-
ship between the hologram and image (incl. focal-length, and metasur-
face size and resolution). Finally, a 2000� 2000 metasurface-based
hologram for the high-quality megapixel image of Mona Lisa’s portrait
is designed by the proposed method and the eye part of Mona Lisa’s
portrait reconstructed by a three-dimensional (3D) printed metasur-
face is experimentally demonstrated.

RESULTS
Bi-anisotropic element topology

To construct a metasurface-based hologram, we should first
develop an element topology that has good potential to realize PAM
with the required acoustic properties (i.e., transmitted phase and ampli-
tude). The proposed 3D asymmetric cuboid element topology with a
length of 10.08mm and a square cross-section of 2.88� 2.88mm2 is
shown schematically in Fig. 2(a). The element consists of four
Helmholtz resonators with two inlet baffle plates and two outlet baffle
plates and is separated with the plates in the front and back sides. The
inner structural geometry of the element is described by 11 pending
parameters, l1 � l11 [see Fig. 2(b)], which will be optimized in their
allowable value ranges (Table S1) to meet the requirement of the holo-
gram. Apart from these 11 parameters, the other geometric parame-
ters are fixed as shown in Fig. 2(a). Theoretically, it is possible to use
more geometric parameters and a larger design space (e.g., topology
optimization), which can potentially provide more abundant topolo-
gies. This, however, will inevitably increase the computational load
and lower the overall efficiency of the design process. As will be
shown in the following, the choice of these 11 parameters provides
sufficient freedom for the optimization of the microstructures by
integrating the machine learning approach. All geometric dimen-
sions are carefully selected to make them suitable for the stack laser
3D-printer. A 3D printed sample made of epoxy resin is shown in
Fig. 2(c), which shows the good quality of fabrication. Our analysis
shows that the thermal-viscous loss has a very slight influence on
the sound propagation, especially at the considered frequency of
12.5 kHz, as given in Fig. S1.

FIG. 2. Schematics of the bi-anisotropy element and its acoustic properties. (a), (b) Topological definition of the element, with fixed parameters shown in (a) and adjustable
parameters l1�l11 shown in (b). (c) Photograph of a 3D-printed element sample. (d)–(f) Bi-anisotropic wave properties of a typical element in the frequency range of 8–20 kHz.
The transmission and reflection coefficients (d), transmissive phase variation (e), and reflective phase variation (f) from both sides of the element are illustrated, respectively.
The reflection and transmission coefficients are the same for forward or backward incidence, i.e., the ¼ t�; rþ ¼ r�; and the transmissive phase shifts are also the same.
Different reflective phase shifts are observed from the structure, demonstrating the bi-anisotropic properties.
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The designed element possesses bi-anisotropic property, which
has been proven to be helpful to effectively control both amplitude
and phase.38 As shown in Figs. 2(a) and 2(b), we consider the response
of the element subject to forward [Fig. 2(a)] and backward [Fig. 2(b)]
incident waves. The following scattering relation can be obtained:38

pþs
p�s

" #
¼

rþ t�

tþ r�

" #
pþi
p�i

" #
; (1)

where p6
s ¼ p6

r þ p7
t represent the amplitudes of the scattered wave-

fields at both sides; p6
r , p

6
t , and p6

i represent the amplitudes of the
reflected, transmitted, and incident waves in forward (þ) and back-
ward (�) directions, respectively; and r6 and t6 are the reflection and
transmission coefficients, respectively. Figures 2(d) and 2(f) illustrate
the amplitudes and phases of r6 and t6 varying with frequency for a
particular element with the detailed geometric parameters presented
in the supplementary text S1. It can be seen that only the phases of the
reflected waves (rþ and r�) are different, while the other properties
are the same. This reflection phase asymmetry is a clear sign of the bi-
anisotropy phenomenon.38 As shown in Fig. S2 in the supplementary
text S1, the energy conservation holds true for the present passive
system.

Notably, the proposed element shows a strong bi-anisotropic
response in the range of 8–20kHz. In this case, bi-anisotropic structures
are adopted to broaden the design space of our proposed metasurface
by enabling more geometric parameters. Indeed, it has been shown that
even for a purely transmissive design, bi-anisotropy can enhance multi-
ple scattering and interaction among different components within the
unit cell, which together lead to improved performance.23

Training DNN for acoustic property prediction
of elements

The design of elements with the required phase and amplitude is
crucial to constructing a metasurface hologram. As demonstrated pre-
viously (Fig. 1), tens of thousands or even millions of elements are
needed to obtain a high-quality hologram with megapixels. This is
obviously difficult to be implemented by the traditional optimization
method23 because of limited computational efficiency and large time
cost. In this paper, we propose a design strategy for individual ele-
ments by combining the DNN with GA. The DNN is a generalized
data-driven method that is used to realize accurate prediction39 or fea-
ture extraction.40 We first develop a DNN with the ability to reproduce
the relationship between the element’s geometry and its acoustic prop-
erties. The DNN model takes l ¼ (l1, …, l11) as input and the ampli-
tude (ypþ ) and phase (yhþ ) of the forward transmission coefficient as
output, as shown in Fig. 3(a). The relationship between the input and
output can be expressed as ypþ ; yhþ½ � ¼ D lð Þ, where D represents the
predicting method of DNN. The neural network contains seven hid-
den layers (layers 1–7), as shown in Fig. 3(a). Layers 0–8 contain 11,
400, 750, 750, 1000, 750, 750, 300, and 2 neurons, respectively. The
ReLU activation function is employed in layers 1–4 to accelerate con-
vergence, and the softplus activation function is employed in layers
5–7 to increase the performance of the nonlinear regression.

The dataset is generated by randomly selecting 11 parameters l1
� l11 in their allowable value ranges and then calculating the training-
required characteristic outputs (i.e., the amplitudes and phases) by the
finite element method (FEM). It is noticed that the selection of l4 � l7
is based on the values of l8, and therefore l1 � l3 and l8 � l11 should
be first identified.

FIG. 3. Illustration of the neural network. (a) DNN structure map, including the size and activation function of each layer. (b) The gradient-descent process and model perfor-
mance of the employed DNN. (c), (d) The training and prediction sets for the phase and amplitude values. The radial and angular coordinates of the polar plot correspond to
the normalized transmission amplitude and phase of the element response, respectively. A batch of training set and a batch of tested structure (c), demonstration of DNN pre-
dictive ability (d), and representative elements (e) inversely designed by the DNN-based GA are shown as well.
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The dataset contains 4000 individuals, which are divided into ten
batches with 400 individuals per batch, one batch of them is shown in
Fig. 3(c). Among the ten batches, eight are randomly selected as the
training sets, one as the cross-validation set; and the rest one is for esti-
mating the DNN. The gradient-decent process shown in Fig. 3(b)
demonstrates that the DNN achieved a mean squared error of approx-
imately 0.000376 on the training set and 0.000196 on the cross-
validation set. These results imply that the DNN can accurately predict
output values for both datasets without overfitting the training data,
indicating that the DNN-based GA can predict structures that are
not present in the training set in any desired responses, as shown in
Figs. 3(c) and 3(d). The mean relative error of the DNN can reach over
97% for both ypþ and yhþ in the frequency range from 8kHz to 35 kHz.

The DNN can predict the properties of 1 � 106 elements in
0.23 s. The prediction speed of the DNN method is seven orders of
magnitude faster than that of the FEM method (about 30 seconds per
element), confirming the efficiency of the DL model. The proposed
method exhibits good scalability and computational efficiency, which
are key factors in addressing the challenges of metasurface design. By
leveraging deep learning’s capabilities in handling high-dimensional
data and complex relationships, along with techniques such as paralle-
lization, model compression, and transfer learning, the scalability of
the approach is enhanced.

Inverse design of elements by DNN-based genetic
algorithm

Although DL is fast in predicting the acoustic properties of ele-
ments (a forward problem), it may encounter difficulties of conver-
gence with inverse problems. In order to accelerate convergence and
obtain optimal results, the inverse design of elements for the pre-
scribed amplitudes and phases is formulated as an optimization prob-
lem which is tackled by using GA. It is known that a larger population
size can generate an optimized solution more easily but is time-
consuming. The traditional FEM-based GA is generally unable to
afford such a huge time cost. Thanks to the extreme calculation speed
of DNN, GA combined with the above DNN model will be developed
to accelerate the design progress of a huge number of elements.

To realize the targeted acoustic wave responses of an element, the
Euclidean distance is utilized to characterize the difference between
the desired and actual responses. Therefore, the objective function of
the optimization problem is formulated as

Maximize : w Xð Þ

¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� cosh� � rX coshXð Þ2 þ r� sinh� � rX sinhXð Þ2

q
2

; (2)

where w denotes the objective function of a metasurface element in
optimization; X represents the design domain, i.e., an arbitrary meta-
surface element with eleven typical topological parameters (l1 � l11);
hX and rX are the phase shift and amplitude of an element involved in
the current generation, respectively; h�and r� are the corresponding
targeted responses. Note that hX and rX are retrieved by the DNN
directly instead of the FEM. When the Euclidean distance varies from
2 to 0, the actual response becomes more and more similar to the tar-
geted response. After a certain number of generations, the algorithm
generates a near-optimal metasurface element with the optimized

l1 � l11 for the wave response of (h
�, r�) on demand. The parameters

of GA are set as the population size Np ¼ 300, the maximum number
of generations En ¼ 500, the crossover probability Pc ¼ 0:1, and the
mutation probability Pm ¼ 0:05.

The DNN-based GA with a large population size has an
extremely high speed with sufficient accuracy and thus can realize the
online inverse design of elements on demand. The present design
method can inversely generate large-scale metasurface with millions of
elements very quickly (i.e., �25min for 1 � 106 elements and 1.5 ms
for one element) in contrast to the traditional time-consuming for-
ward simulations and optimization process. In this way, it could be
used as a real-time, rapid-feedback approach to design the elements.
The design of 1� 106 elements all exhibiting unique phase and ampli-
tude combinations costs about 25min. As shown in Fig. 3(c), the
results predicted by the DNN-based GA (red crosses) can reach those
areas that the training set (gray dots) does not cover. Some of those
areas are marked in the blue circles. The DNN-based GA is powerful
to predict various elements to fit the requirement of the perfect PAM
holography, as shown in Fig. 3(d). Some representatives inversely
designed elements are shown in Fig. 3(e).

Iterative compensation algorithm for improving
holographic images

To improve the quality of the holographic image, an iterative
compensation algorithm is further developed to diminish the deviation
of the reconstructed holographic image from the target image as far as
possible.

According to Huygens–Fresnel principle, each point on the outlet
plane of the metasurface can be considered as a secondary source; and
all waves generated by these secondary sources are superimposed
through interference to form a holographic image on a plane. For fur-
ther details and illustration, as shown in the supplementary text S5
and Fig. S9. Let us consider the case of acoustic waves with an angular
frequency of x and omit the time-harmonic term e�ixt . For a point
acoustic source placed at xp with unit intensity, the generated acoustic
wave field at xs can be expressed as17

u xsð Þ ¼
1

xp � xsj j
eik xp�xsj j ; (3)

where k ¼ 2p=k ¼ 2pc=f with k ¼ c=f and f ¼ 2px being the wave-
length and frequency, respectively. When trying to reproduce this
point source, a PAM sound source array should generate acoustic
wave satisfying uðxsÞ. Therefore, to reconstruct an image using an
metasurface-based acoustic hologram, each element should generate
ueðxeÞ as the output by treating them as a point source,

ue xeð Þ ¼
ð
T

A xtð Þ
xt � xsj j

eik xt�xej j dxt; (4)

where ueðxeÞ is the complex pressure at the element position xe and
its amplitude uej j is not necessarily equal to 1; xe is the 3D position
vector of the element; and AðxtÞ is the gray value of the pixel at xt on
the target image T and is normalized from 0 to 1. After integrating xt

over all pixels on the target image T, we can obtain ueðxeÞ. The nor-
malized amplitude aðxeÞ and phase hðxeÞ generated by the metasur-
face elements are then obtained as
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a xeð Þ ¼
ue xeð Þ
�� ��

max
xe2T

ue xeð Þ
�� ��� � ; (5)

h xeð Þ ¼ arctan
Im ue xeð Þð Þ
Re ue xeð Þð Þ

 !
: (6)

As the metasurface is ensonified by an incident wave, a pressure
with amplitude aðxeÞ and phase hðxeÞ is generated at the outlet of ele-
ment e in the metasurface, and the sound pressure field uhðxhÞ in the
holographic image planeH can be expressed as17

uh xhð Þ ¼
ð
M

a xeð Þ
xh � xej j

ei k xh�xej j�h xeð Þð Þdxe: (7)

It is known that uhðxhÞ
�� �� is the amplitude of the sound pressure at the

reconstructed pixel xh of the holographic image. Its normalized value
(denoted as uhj j) can be displayed as a gray-white image (with uhj j
¼ 0 to 1 corresponding to black to white). For an ideal lossless holo-
graphic image, uhj j should be identical to AðxtÞ. In practice, however,
the metasurface is finite and only placed on one side of the image.
Furthermore, the metasurface is discrete with finite elements. All these
facts will cause missing of the information, resulting in the deviation
of the reconstructed holographic image from the target image. To
improve the quality of the holographic image, we propose the follow-
ing iterative compensation algorithm to compensate for the missed
information.

To perform the compensation algorithm, the following matrices
are introduced: AT, a real matrix whose elements are the normalized
gray values at all pixels of the target image T; UM, a complex matrix
whose elements are the sound pressure at all element outlets of the
metasurface-based hologram; UH, a complex matrix whose elements
are the sound pressure at all pixels of the holographic image H; UH, a
real matrix whose elements are the normalized sound pressure ampli-
tudes at all pixels of the holographic image H (i.e., the absolute values
of the elements of UH); and a system error matrix D ¼ AT �UH

(real), which represents the deviation of the reconstructed holographic
image from the target image. Furthermore, we introduce two
mappings,

UM ¼ g ATð Þ; (8)

UH ¼ h UMð Þ; (9)

where the first one is obtained from Eq. (4) and is the mapping from
the target image to a metasurface-based hologram; the second one,
obtained from Eq. (7), is the mapping from the hologram to the holo-
graphic image, as illustrated in Fig. 4. The iterative compensation pro-
cess may be summarized as follows (refer to Fig. 4 for the basic
concept):

(1) At the beginning (the 0th-iteration), UH ¼ 0, and thus

Dð0Þ ¼ AT. Then, from Eqs. (8) and (9), we can calculate the 1st-

iteration values: Uð1ÞM ¼ gðATÞ, Uð1ÞH ¼ hðUð1ÞM Þ ¼ hðgðATÞÞ, and

D 1ð Þ ¼ AT �U
1ð Þ
H : (10)

(2) For the 2nd-iteration, replacing AT with Dð1Þ, and then we

obtain the compensations of U
ð1Þ
M and U

ð1Þ
H : gðDð1ÞÞ and

hðgðDð1ÞÞÞ. Therefore, we have the 2nd-iteration values,

U
2ð Þ
M ¼ U

1ð Þ
M þ g D 1ð Þ

� �
¼ g D 0ð Þ
� �

þ g D 1ð Þ
� �

; (11)

U
2ð Þ
H ¼ U

1ð Þ
H þ h g D 1ð Þ

� �� �
¼ h g D 0ð Þ

� �� �
þ h g D 1ð Þ

� �� �
; (12)

D 1ð Þ ¼ AT �U
1ð Þ
H ; (13)

where we have denoted Dð0Þ ¼ AT.
(3) Following the above procedure, we can obtain the jth-iteration

values as

U
jð Þ
M ¼U

j�1ð Þ
M þ g D j�1ð Þ

� �
¼ g D 0ð Þ
� �

þ g D 1ð Þ
� �

þ �� �þ g D j�1ð Þ
� �

¼
Xj�1
i¼0

g D ið Þ
� �

; (14)

FIG. 4. Schematic illustration of iterative compensation algorithm and mapping rela-

tions between metasurface. The algorithm initially obtain metasurface U
ð1Þ
M from

the target image AT and calculates holographic image U
ð1Þ
H using acquired U

ð1Þ
M

(following the straight red arrows). The algorithm then computes the difference as

Dð1Þ ¼ AT �U
ð1Þ
H . Subsequently, the algorithm replaces the target AT with the

target compensation DðjÞ and continues iterating among DðjÞ, U
ðjÞ
M , and U

ðjÞ
H by fol-

lowing the curved blue arrows. The straight arrows represent the mappings, while
the curved arrows indicate the iterative relations between the different stages.
Figure credit: “Mona Lisa” by Leonardo da Vinci is in the public domain.
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U
jð Þ
H ¼ U

j�1ð Þ
H þ h g D j�1ð Þ

� �� �
¼ h g D 0ð Þ

� �� �
þ h g D 1ð Þ

� �� �
þ � � � þ h g D j�1ð Þ

� �� �

¼
Xj�1
i¼0

h g D ið Þ
� �� �

; (15)

D jð Þ ¼ AT �U
jð Þ
H : (16)

It is noted that U
ð1Þ
M ¼ AT.

Since each iteration is based on the finite discrete metasurface
arranged on one side of the image and will not yield an exact solution,
the oscillation near the optimal solution will appear in the iteration
process. Therefore, a diminishing compensation rate is introduced
into the algorithm to avoid oscillation. Equations (15) and (16) are,
hence, replaced by

Û
jð Þ
M ¼

Xj�1
i¼0

l ið Þg D ið Þ
� �

; (17)

Û
jð Þ
H ¼

Xj�1
i¼0

l ið Þh g D ið Þ
� �� �

; (18)

where lðiÞ is the diminishing compensation rate of the ith iteration, it
is similar to learning rates in machine learning and balances conver-
gence speed and stability. In general, a smaller compensation rate is
beneficial for higher-resolution metasurfaces. In the present algorithm,
the compensation rates are selected based on extensive simulation
tests, which are set as 0.5–0.3 for the first three iterations, and then are
reduced to 0.2–0.05 for the subsequent iterations.

Inverse-designed metasurface-based holograms

To demonstrate the effectiveness of the proposed method, we
next present some examples. The entire process of designing a high-
quality metasurface-based hologram is summarized as follows:

(1) Train a DNN model to estimate the elements’ properties (i.e.,
transmitted phases and amplitudes) at a designated frequency.

(2) Employ the iterative compensation method to determine and
optimize the phase and amplitude distributions of the element
array of the acoustic metasurface-based hologram according to
the target image.

(3) Inversely design the metasurface with customized elements
obtained by DNN-based GA.

To characterize the holographic image quality, we define the fol-
lowing parameter F to estimate the fitness between the target image
and the designed sound pressure distribution

F ¼
ð
T

1�
A xtð Þ � uh xhð Þ

�� ����� ���
A xtð Þ

0
@

1
A
dxt; (19)

where xh ¼ xt as the holographic image and target image share the
same spatial region. The integral is performed over the target image
area T (the same as the holographic image area H). In calculation,
both A and uhj j are, respectively, normalized by their own mean val-
ues in the entire pressure field.

Proper spatial relationship between hologram
and image

In addition to the meticulous design of elements to obtain precise
modulation of phases and amplitudes, the spatial relationship between
the metasurface and image also has significant effects on the quality of
holographic imaging. Such spatial relations include the sizes of the
metasurface and image, the distance between them (i.e., focal-length
F0), and the elements per unit length R (i.e., pixel density measured by
pixels per meter, PPM). In addition, the wavelength is also an impor-
tant parameter to be considered. The hologram performance is closely
tied to these spatial parameters and therefore they need to be carefully
selected within specific ranges and follow certain rules. Herein, we will
discuss this issue by considering the imaging of Tianjin University
logo. Since the speed of sound in air is approximately 343 m/s at room
temperature, the corresponding wavelength is 27.4mm when the
operating frequency is selected as 12.5 kHz. Clearly, the wavelength is
much larger than the size of an element [Fig. 2(a)]. Here, the frequency
is chosen so that it ensures a good spatial resolution while keeping the
thermal-viscous loss small. The metasurface is constructed by inserting
the elements uniformly and discretized to form a square lattice while
other portions are filled with soundproof baffles. The number of the
elements (i.e., pixels) is assumed to be N�N¼ 250� 250, which is
the same as the pixels of the target image. Both the metasurface and
image are square with the same side length (S).

Figure 5(a) demonstrates images of the logo obtained after 10
iterations of the compensation algorithm by the customized metasur-
faces with different sizes and focal lengths. The background color in
the figure represents the fitness of the images. The abscissa (K) in the
figure is the ratio of side-length S to focal-length F0. The equal side-
length curves are hyperbolas given by S¼K�F0 ¼ const. The metasur-
face pixel-density is R¼N/S¼N/(K�F0), thus the above hyperbolas
also define the equal pixel-density curves. From the upper-left to the
lower-right in the figure, the side-length increases as the pixel-density
decreases. This is also shown in Fig. 5(b). The curve in either Fig. 5(a)
or Fig. 5(b) is the equal side-length curve with S¼K�F0¼ kN or the
equal pixel-density curve with R¼ 1/k. The images near this curve
have high fitness, showing a preferred area of spatial parameters for
the best results. The one as shown in Fig. 5(c) with K¼ 1.2 and F0¼ 6
m has the highest fitness of 9.345. The fitness becomes lower as the
image is farther from this curve. Specifically, the images below this
curve with large S (S > kN) or small R (R< 1/k) have a lot of blurred
lines and interference patterns and are of very low definition. More
iterations of compensation are necessary to improve the quality of
these images. Fortunately, most images above this curve have satisfac-
tory legibility.

Figure 5 also indicates the best choices regarding metasurface size
and focal length for a fixed resolution (N�N¼ 250� 250). To show
the influence of the metasurface resolution (N�N) on the image qual-
ity, we present the results in Fig. 6 with different values of N while fix-
ing the focal-length F0 ¼ 11 m and metasurface side-length S¼ 11 m
(the same as the side-length of image). The target image has 500� 500
pixels. The improvement of the image quality by the iterative compen-
sation algorithm is also demonstrated in Fig. 6(a) which illustrates the
fitness improvement with the iterative order for the cases of
N�N¼ 350� 350, 500� 500, 650� 650, and 800� 800. It is shown
that more elements of the metasurface can achieve higher fitness. The
fitness can be improved gradually by the iterative compensation

Applied Physics Reviews ARTICLE pubs.aip.org/aip/are

Appl. Phys. Rev. 10, 021411 (2023); doi: 10.1063/5.0136802 10, 021411-7

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/apr/article-pdf/doi/10.1063/5.0136802/17848073/021411_1_5.0136802.pdf

pubs.aip.org/aip/are


algorithm especially for lower resolution metasurfaces. For instance,
the fitness of the image generated by the 800� 800 metasurface is
improved by 0.0258 from 0.9360 to 0.9619; while that by the
350� 350 metasurface is improved by 0.0348 from 0.9137 to 0.9486.
The increase in the fitness is fast in the first several iterations but slows
down in the subsequent iterations. This is mainly due to the choice of
the gradually reduced compensation rate li to avoid oscillation. The
fitness cannot reach 1, implying that the missed information cannot
be fully compensated. Notably, some example images may turn gray
as their fitness continues to increase. For instance, as shown in the
500 � 500 resolution logo image in Fig. 6(b), the logo text part in the
2nd-iteration image appears darker than in the 1st-iteration. This is
caused by the normalization process applied during figure drawing.

The images are normalized according to the maximum intensity value
among all the pixels. The drawing algorithm normalizes a few pixels at
the top of the logo in the 2nd-iteration image to 1, which has large
deviations in intensity compared to other pixels (pure white). This can
make other regions appear “darker.”

The images obtained with different iterative orders are shown in
Fig. 6(b) from which one can observe that the interference fringes and
unresolved details appearing at the pattern edges and junctions in the
images are gradually removed with the iterative compensation pro-
gressing. The data-driven brightness variation over each iteration is
caused by the normalization process. The images are normalized
according to the maximum intensity value among all the pixels, which
could vary from one iteration to another. An enhancement of the

FIG. 5. Influence of spatial relationship
between the metasurface and image on the
holographic images of Tianjin University
logo. (a) The holographic images after 10
iterations of the compensation algorithm
with the fitness of results varying with focal
length and metasurface size. (b) Contour
maps for metasurface size (S) and pixel
density (R). (c) Representative image with
the highest fitness which is marked by the
red square in (a). The area near the equal
side-length curves shown in (a) and (b)
yields optimal choices of the spatial
parameters.
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details is presented in Fig. 6(c), which compares the zoomed-in images
obtained after the 21st iteration with the 350� 350 and 800� 800
metasurfaces. More details about the quantitative evaluation are shown
in the supplementary text S3.

The regular patterns revealed in Figs. 5 and 6 provide a guide-
line to design a metasurface-based hologram. Generally, more ele-
ments of a metasurface can yield a higher-quality image for a
particular target picture. In the case of the same size and pixel num-
bers of both metasurface and image, the best choice of the element
number (N) is near the ratio of side length (S) to wavelength (k) and
the ratio of side length to focal length (K) is better to be close to 1
(around 0.8–1.2). On the other hand, the developed iterative com-
pensation method can improve the definition of images effectively in
most cases.

High-quality imaging of the Mona Lisa’s portrait

To demonstrate the potential of the developed method in design-
ing a megapixel hologram, we present a holographic reconstruction of
the Mona Lisa’s portrait with 2000� 2000 pixels by a high-resolution
metasurface with 2000� 2000 elements at 12.5 kHz as shown in
Fig. 7(a). The focal length is 22 m and the ratio of side-length to focal
length is 1. The target image is shown in Fig. 7(b). The design of 4
� 106 elements was completed within 2 h. The images at the represen-
tative steps of the iterative compensation algorithm and the corre-
sponding fitness are illustrated in Figs. 7(c1)–7(c7) and 7(d),
respectively. Benefiting from the large pixel number of the metasurface,
the fitness of the 1st step is already as high as Fð1Þ ¼ 0:9668. It further
increases rapidly to Fð3Þ ¼ 0:9808 in the first three iterations and then
slowly to Fð51Þ ¼ 0:9880 at the 51st iteration as shown in Fig. 7(d).
The image quality is improved gradually with the iterations as shown

in Figs. 7(c1)–7(c7). Compared with the first iteration result
[Fig. 7(c1)], the final optimized image [Fig. 7(c7)] is significantly
improved in definition, contrast, and sharpness. The stripes at the edges
are also suppressed after the iterations. A detailed comparison among
the target image, the final optimized image, and the first iteration image
using zoomed-in view of some parts of the images [Figs. 7(e1)–7(e3)]
reveals that the final optimized image has almost no difference from
the target image. The texture of the oil painting is captured, and the
interference fringes are removed. The comparison demonstrates that
the iterative compensation algorithm can bring much more detail to
the image along with the increasing fitness especially considering that
only a quarter metasurface is filled with elements (the remaining por-
tions are filled with soundproof baffles).

Experimental measurements were carried out to verify the
proposed design. Due to the limitation of the cost and experimental
condition, only the left eye part of Mona Lisa was reconstructed and
measured. The test setup is described in detail in the supplementary
text S5. A metasurface with 30� 30 elements was designed to produce
the eye part image with 100� 100 pixels in the focal plane 0.12 m
away at 12.5 kHz. The metasurface and image are of the same size of
0.288� 0.288 m2. The metasurface was fabricated by 3D laser printing
[Fig. 8(a)]. A 6� 6 speaker array [Fig. 8(b)] is used as the sound
source. The measurements were performed by scanning the sound
field in the focal plane. The measured holographic image (amplitude)
is demonstrated in Fig. 8(c) with the phase distribution shown in
Fig. 8(d). For comparison, the simulated images after the 1st
(F 1ð Þ ¼ 0:9668), 3rd (F 3ð Þ ¼ 0:9808), and 51st (F 51ð Þ ¼ 0:9880) iter-
ations are presented in Figs. 8(e)–8(g), and the phase distribution of
51st iterations is shown in Fig. 8(h). For the details of the simulation,
we refer to supplementary text S5. The fitness of the measured image is

FIG. 6. Impact of metasurface pixel resolution on holographic images of Tianjin University logo. (a) Fitness curve depicting the quality of representative holographic images as
a function of iterations. (b) Holographic images at the 1st, 2nd, 5th, and 21st iteration for different metasurface resolutions (pixels) with corresponding fitness values marked by
hollow squares shown in (a). (c) Comparison of specific image features marked in the bottom line at (b) and generated by metasurfaces with 350 � 350 and 800 � 800 pixels
after the 21st iteration, illustrating the differences in sharpness, contrast, and overall image quality.
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F ¼ 0:944 which is close to the simulation results. It can be observed
that the measurements are generally in good agreement with the simu-
lations, despite the presence of aliasing and speckles in holographic
images. These result from factors like unwanted reflections, noise,
inability to simulate ideal plane waves, and manufacturing imperfec-
tions in metasurface elements. The slight difference may stem from the
inhomogeneity of the excited plane wave and the unavoidable errors
during sample fabrication and assembly. An analysis of how noise
influences results can be found in the supplementary text S6. In addi-
tion to the Mona Lisa’s portrait, several other examples are demon-
strated and summarized in the supplementary text S4, which confirm

the effectiveness of the proposedmethod. Due to its ability to reconstruct
high-resolution complex images with precise phase-amplitude modula-
tion, the presented high-resolution metasurface can offer numerous
potential practical applications. These include volumetric displays,
acoustic tweezers, nondestructive testing/inspection, medical imaging,
and acoustic communication, among others.

DISCUSSION

In summary, a high-resolution metasurface holography optimiza-
tion method is developed to achieve high-quality megapixel holo-
graphic images. The proposed element topology exhibits bi-anisotropic

FIG. 7. High-quality holographic imaging of Mona Lisa’s por-
trait. (a) 3D schematic view of the hologram and the gener-
ated image. (b) The target image of the Mona Lisa’s portrait.
(c1)–(c7) Reconstructed images with different iteration

orders, the last one is the 51st-iteration result U
51ð Þ
H . (d)

Fitness curves correspond to iterative process. (e1) Split
view comparison of the face part of “Mona Lisa’s portrait”

between the 51st-iteration result U
ð51Þ
H and the 1st-iteration

result U
ð1Þ
H . (e2), (e3) The comparison of eye part and left

bottom part of Mona Lisa’s portrait between target image, the

51st-iteration result U
ð51Þ
H , and the 1st-iteration result U

ð1Þ
H .
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properties and allows for flexible and precise PAM. The developed
DNN-based GA can design millions of bi-anisotropic elements with
customized phases and amplitudes in a fast and efficient manner,
which is difficult to achieve using empirical approaches or conventional
optimization methods. The proposed iterative compensation method
can systematically improve the quality of the hologram by reducing the
inconsistencies between target and projected images. As an example,
the interference fringes are removed, and the unclear details are
improved by adopting the compensation method.

Overall, the proposed methodology significantly enhances
metasurface-based hologram designs, promoting efficiency, precision,
and real-world applications. The results also demonstrate the possibil-
ity of realizing frequency-selective imaging, which opens a way to
achieve frequency-selective hologram in multiple focal planes by
designing elements at different frequencies. The approach can be
extended for other wave-based metamaterials and devices by designing
and optimizing the microstructures, with potential applications rang-
ing from impedance matching, wavefront engineering, and polariza-
tion control. Future work could address challenges such as
computation complexity, model generalization, and fabrication con-
straints. Advancements in scalable deep learning algorithms, such as
transfer learning and neural architecture search, can reduce training
time and resource requirements while maintaining performance and
generality.

MATERIALS AND METHODS
M1. Deep neural network (DNN)

Here a fully connected neural network is employed to predict ele-
ment properties.41 Adjacent layers are fully interconnected: all neurons
of the previous layer contribute to the next layer and every neuron
derives its value from all previous layer’s neurons. Fully connected
DNNs deployed in this paper can be decomposed as perceptrons.42

The basic theory of perceptron and DNNs are given as follows. The
fully connected neural network architecture represents an easy-to-
train approach that is sufficient to give rise to the arbitrary phase and
amplitude of an element. More sophisticated network architectures
may provide enhanced accuracy and capability for some tasks; how-
ever, it is important to balance the complexity of the network architec-
ture with the available computational resources.

A DNN (or perceptron) contains input, output, and hidden
layers. An n-dimensional perceptron with m-dimensional input
xjf gmj¼1 can be represented as

yn ¼ p
Xm
j¼1

wj;nxj þ b

 !
; (20)

where yn represents the nth output neuron of the layer; p(.) is the acti-
vation function of the neural network and we employed ReLU and
softplus in the current work; wj;n is the weighting factor of the jth
input neuron xj; and b is the bias term. In DNN, each neuron can be
represented as

xn;k ¼ p
Xm
j¼1

wj;n;k�1xj;k�1 þ bk�1

 !
; (21)

where xn;k represents the nth neuron of the kth layer for k> 1; xj;k�1
represents the jth neuron of the previous (k� 1)th layer; bk�1 denotes
the bias of the previous (k� 1)th layer; and wj;n;k�1 is the nth weight-
ing factor of the neuron xj;k�1. When k¼ 1, xn;1 represents the nth
input neuron; and the bk ¼ 0 for the output layer.

The eleven structural parameters, l1 � l11, are inserted into xn;1
(n¼ 1–11), then DNNs inference is processed through Eq. (21). The
model will generate biased predictive values after the training set is
input into xn;1 (n¼ 1–11), the mean square error, MSE, can be esti-
mated as43

FIG. 8. Experimental measurements for the holographic image eye part of Mona Lisa’s portrait. (a) The fabricated metasurface sample with 30� 30 3D printed elements. (b)
The 6� 6 speaker array used in the measurement for the generation of a plane wave. (c), (d) Experimentally measured amplitude distribution and phase distribution on the tar-
get image plane, respectively. (e)–(g) Computational holographic images corresponding to 1st-, 3rd-, and 51st-iteration. (h) Simulated phase distribution on the target image
plane.
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MSE ¼ 1
N

XN
i¼1

Xq
n¼1

li;n � yi;nð Þ2; (22)

where N is the number of the output neurons; q is the dimension of
the output layer; yi;n is the nth output property of the ith element; and
li;n is the corresponding property calculated by FEM. The mean rela-
tive error, MRE, can be estimated as

MRE ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

Xq
n¼1

li;n � yi;n
yi;n

� �2

vuut : (23)

Note that some prominent aspects of data dependency, model
interpretability and robustness to fabrication errors need to be solved
for further improving the present DNN method. In addition, the
cutting-edge generative pre-trained transformer can also be applied
here if the required data collection and preprocessing and model adap-
tation are solved.

M2. Numerical simulation

All wave simulations and calculations of the elements and meta-
surface are carried out by the finite element analysis software
COMSOL Multiphysics. For the calculation of elements, we use
thermo-viscous acoustics module in pressure acoustic module. We use
pressure acoustic module for the wave response based on the whole
metasurface. Perfectly matched layers are applied in the numerical
simulation to reduce the reflection on the boundaries, corresponding
to the sound-absorbing sponge used in the experiment. The loss in the
air is considered by the viscous fluid model with bulk viscosity of
1.849� 10�5Pa s (air, 25�) in the Pressure Acoustic Module. The
phase shift and transmission rate are extracted from the scattered
fields of sound. To improve the accuracy, the transmission is calcu-
lated by extracting the integrated amplitude of strength at the cross-
section two wavelengths away from the element outlet in the radial
direction to avoid near-field effects.

M3. Sample preparation and experimental
measurement

All metasurface elements were fabricated by 3D laser printing
with a resolution of 10lm. The printed material is hard UV-curable
resin with a density of 1220 kg/m3 and a longitudinal wave speed of
2650 m/s. The elements were secured in a laser-cut PMMA plate. The
PMMA has a density of 1180 kg/m3 and a longitudinal wave speed of
2690 m/s. The characteristic impedance of the elements and PMMA is
much larger than the air, and therefore all solids are considered acous-
tically rigid. The pressure distribution of the hologram was acquired
by an acoustic measurement system. In the experiments, an array of
36 speakers was used to generate the incident plane wave one meter
away from the metasurface. The sound field at the focal plane was
scanned by a moving sound sensor with a step of 3mm in an area of
0.288� 0.288 m2. The sound sensor can collect acoustic pressure with
a sensitivity of 1mV/Pa from 6.5Hz to 140 kHz. We measured the
sound pressure at each point five times, performed the Fourier trans-
form, and then took the average value to reduce the background noise.
The experiment was carried out in an anechoic environment (see sup-
plementary text S5 for details).

SUPPLEMENTARY MATERIAL

See the supplementary material for (S1) element topological defi-
nition and thermal-viscous loss effect; (S2) QR code generation and
detailed calculation; (S3) analysis on holographic image detail level
improvement; (S4) additional holographic images with detailed infor-
mation; (S5) experiment setup; and (S6) experiment result analysis.
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