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Abstract
Unidirectional nonreciprocal wave propagation is an unprecedented phenomenon, which has attracted much research
interest. Connecting a phononic crystal with an asymmetric structure to break the spatial inversion symmetry is a
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popular manner to realize this phenomenon using the wave mode transformation. In this paper, a new model is pro-
posed based on a single periodic structure. The arrays of asymmetric and symmetric interfacial delaminations are inten-
tionally introduced into the top and the bottom part of a stack of periodic elastic layers, respectively. So, the structural
spatial inversion symmetry can be broken and the guided waves can pass through the whole structure only from the top
side with the changed mode generated by the array of asymmetric interfacial delaminations. Thus, it is indispensable for
the part of phononic crystal that the partial band-gaps of symmetric and antisymmetric guided waves have to be sepa-
rated, which is the reason why we introduce the array of symmetric central or side interfacial delaminations into the
stack of periodic elastic layers. The transmission spectra of the guided waves and the dispersion curves for the unit cell
imposed by the Bloch–Floquet boundary condition are both calculated by the spectral element method. Then, the inter-
facial delamination-induced unidirectional propagation of guided waves in the finite stack of periodic elastic layers is
numerically confirmed. This paper provides a new concept to control the waves propagating in phononic crystals via the
insertion of some interfacial delaminations or cracks.

Keywords
Nonreciprocal wave propagation, spatial inversion symmetry, wave mode transformation, periodic elastic layers, spectral
element method

1. Introduction

The investigation on the acoustic/elastic waves propagating in periodic structures/materials has attracted
considerable attention. Such structures are often called phononic crystals or acoustic/elastic metamater-
ials, which are well known for their outstanding capacity for the control of acoustic/elastic wave propa-
gation. In addition, some unprecedented acoustic/elastic wave phenomena or novel acoustic wave
devices can be realized through the artificial design of the unit cells within the periodic structures/materi-
als, such as negative refraction [1,2], focusing [3], cloaking [4], wave filtering [5], waveguides [6], acoustic
superlens [7] and demultiplexer [8].

In recent years, the investigation on the acoustic/elastic diode starts to thrive inspired by electric and
optical diodes, which can realize the unidirectional nonreciprocal transmission of energy [9]. For most
conventional materials, the principle of reciprocity is satisfied that waves will propagate symmetrically
between the source and the receiver [10]. It has been proved that the unidirectional nonreciprocal acous-
tic/elastic wave propagation can be realized by breaking either the time reversal symmetry or the spatial
inversion symmetry. Liang et al. [11,12] proposed a simple structure connecting a phononic crystal with
a strongly nonlinear medium to break the time reversal symmetry. The waves incident from the side of
the phononic crystal are blocked within the band-gap, while, the waves incident from the side of the non-
linear medium at the same frequency pass through the phononic crystal successfully. Actually, the trans-
mitted waves are the higher harmonics generated by the fundamental waves in the nonlinear medium.
The shortcoming for this model is that the unidirectional transmission is quite low due to the inherent
low conversion efficiency in acoustic nonlinear activities [13]. Spatiotemporal periodic structures are also
able to break the time reversal symmetry based on totally linear materials, whose material properties
vary with time [14–16]. However, the fabrication and the practical operation for spatiotemporal periodic
structures seem more complicated. To break the spatial inversion symmetry, a combined structure com-
posed of a symmetric phononic crystal and an asymmetric structure was proposed [13,17,18]. It is known
that the waves propagating in a finite thickness structure, called guided waves, have multi modes [19–
24]. For example, there are three kinds of guided waves in an elastic layer, i.e., symmetric Lamb wave,
antisymmetric Lamb wave, and SH wave, which can be transformed to each other by an asymmetric
structure [25]. The wave with a specified mode excited from the side of the phononic crystal cannot pro-
pagate within the band-gap, while the same waves incident from the side of the asymmetric structure can
do by changing its’ mode. The spatial inversion symmetry can also be broken by the graded phononic
crystals, in which the unidirectional wave propagation is possible due to the particular excitation way
[26,27]. For example, the wave propagation is prohibited along the direction of the increasing material
constants in the band-gap, while the same wave can propagate along the opposite direction due to the
resonance. The limitation for graded phononic crystals is that the working frequency range is narrow
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and the resonance frequency is much sensitive to the boundary conditions. It seems the challenge to
design a desirable acoustic/elastic diode, which can gain wide engineering applications, still exists.

In this paper, the interfacial delaminations (or interfacial cracks) induced unidirectional propagation
of guided waves is investigated. Instead of connecting a phononic crystal with an asymmetric structure,
we simply insert an array of asymmetric interfacial delaminations into a stack of periodic elastic layers.
The whole structure can be separated into two parts (see the conceptual illustration in Figure 1). The
bottom part called the blocking zone is used to block the guided waves in the band-gaps. The top part
called the transformation zone where the wave mode transformation occurs, which consists of an array
of asymmetric interfacial delaminations (see Figure 2). Thus, the guided waves can transmit over the
blocking zone with the changed mode.

Figure 1. The conceptual illustration of unidirectional propagation of guided waves.
‘‘S’’ and ‘‘A’’ represent the symmetric and the antisymmetric guided waves, respectively. The ‘‘transformation zone’’ denotes the zone where the wave

mode transformation occurs, and the ‘‘blocking zone’’ can be used to block the guided waves with the specified mode in the band-gap. The whole

structure is composed of a stack of periodic elastic layers (see Figure 2).

Figure 2. The schematic diagram of the stack of periodic elastic layers which enable the unidirectional propagation of guided waves
for the blocking zone (a) without interfacial delamination, (b) with the array of symmetric central interfacial delaminations, and
(c) with the array of symmetric side interfacial delaminations.
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It should be pointed out that whether there exist the separated partial band-gaps of guided waves is
the key point for the blocking zone. However, the shortcoming of the stack of periodic elastic layers is
that the partial band-gap of symmetric guided waves does not exist in the low frequency. To improve
the efficiency of the present model, the array of symmetric (central or side) interfacial delaminations is
inserted into the blocking zone (see Figure 2(b) or (c)), which can help us gain more band-gaps, espe-
cially the separated partial band-gaps [28]. The transmission spectra of the guided waves propagating in
the finite stack of periodic elastic layers with interfacial delaminations and the dispersion curves for the
corresponding unit cell imposed by Bloch–Floquet boundary conditions are both calculated by the spec-
tral element method (SEM), which has been proven to be a more efficient numerical method than the
conventional finite element method (FEM), especially for the high-frequency wave propagation prob-
lems [28,29]. The working frequencies can be uncovered through the partial band-gaps of guided waves
propagating in the blocking zone. Then, the unidirectional propagation of symmetric (antisymmetric)
guided waves in the finite stack of periodic elastic layers with the array of interfacial delaminations is
numerically confirmed. Furtherly, the influences of the arrays of symmetric central and side interfacial
delaminations on the unidirectional transmission are also taken into account. The proposed model may
have potential applications in the field of wave propagation isolation and information processing. In
addition, we pave an avenue to control the waves propagating in phononic crystals by intentionally
introducing some interfacial delaminations or cracks.

This paper is composed of five main parts. Section 2 gives a detailed description of the proposed
model. In section 3, the derivation of the SEM is presented. Section 4 shows the numerical results of the
transmission spectra and the dispersion curves, and the corresponding discussions are also presented. In
section 5, some concluding remarks are given.

2. Model description

The stack of periodic elastic layers is under consideration in a plane strain setting. The arrays of asym-
metric and symmetric interfacial delaminations are both intentionally introduced to this structure to
realize the unidirectional propagation of guided waves. There are only two wave mode shapes for the
guided waves propagating in such structures, i.e., the symmetric wave mode and the antisymmetric wave
mode with respect to the central line in the direction of x2-axis. The array of asymmetric interfacial dela-
minations is inserted into the top part (i.e., the transformation zone, see Figure 2) to induce the wave
mode transformation, in which the symmetric (antisymmetric) guided waves can be generated by the
antisymmetric (symmetric) guided waves. The part containing the array of symmetric interfacial delami-
nations can be regarded as a new phononic crystal used to block the guided waves with the specified
mode in the partial band-gap (see the array of the symmetric central interfacial delaminations in Figure
2(b) and the arrays of the symmetric side interfacial delaminations in Figure 2(c)).

The stack of 40 elastic layers is considered, which is composed of two different materials (M1 and
M2) distributed periodically along the x2-axis (see Figure 2). The two materials are selected as alumi-
num and epoxy, respectively. The mass density, Poisson’s ratio and Young’s modulus of aluminum and
epoxy are set as r(1) = 2700 kg/m3, n(1) =0.33, E(1)=70GPa, and r(2) = 850 kg/m3, n(2) =0.45,
E(2)=0.5GPa, respectively. In the following part, it is assumed that the blocking zone contains 26 elas-
tic layers (13 unit cells) and the transformation zone contains 14 elastic layers. The width and height of
each elastic layer are set as w=0.02m and h0=0.002m, respectively. The lengths of each central inter-
facial delamination and each side interfacial delamination in the blocking zone are 0.01 and 0.005m,
respectively. The length of each side interfacial delamination in the transformation zone is 0.005m too.

The generalized equations of motion for the time-harmonic elastic waves propagating in a two-
dimensional (2D) elastic medium are given by

sij, j + bi + rv2ui = 0, ð1Þ

where i = 1, 2 and j = 1, 2, a comma in the subscript denotes the corresponding spatial derivative and the
repeated subscripts imply the summation, r is the mass density, bi represents the body force in the xi-
direction, and v is the angular frequency. The components of the stress tensor sij can be expressed by
the displacement components ui as
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The common time-harmonic factor e�ivt appearing in all physical quantities is neglected throughout
this paper for the sake of brevity.

For the perfectly bonded elastic layers, the displacement and stress fields on the interface should be
continuous, which can be described by

u(1)
i = u(2)

i ,s(1)
2i = s(2)

2i , i = 1, 2ð Þ, ð3Þ

where the superscripts ‘‘1’’ and ‘‘2’’ in the brackets denote the two different materials M1 and M2, i.e.,
the aluminum and the epoxy, respectively. If there is an interfacial delamination between two neighbor-
ing layers, it is assumed that the two debonded surfaces do not interfere with each other. It means that
the displacement fields are discontinuous and the stress-free boundary conditions are satisfied on the
two faces of the delamination, which can be written as follows

s(1)
22 = s(2)

22 = 0,s(1)
12 = s(2)

12 = 0: ð4Þ

For a phononic crystal, any unit cell can be repeated by a translation vector r= r1e1 + r2e2, where r1
and r2 are the constant multiple of the lengths of the unit cell in the x1- and x2-directions, respectively,
and e1 and e2 are the base vectors. The Bloch–Floquet boundary conditions should be imposed on the
unit cell, and the periodic displacement fields and the periodic stress fields can be represented as u(x +
r)= u(x)exp(k�r) and s(x + r)=s(x)exp(k�r), respectively, where x=x1e1 + x2e2 is the position vector
of the point in the unit cell and the wave vector is introduced as k= k1e1 + k2e2. Specifically, for the
one-dimensional (1D) periodic structure and the corresponding unit cell in Figure 2, we have

ui x2 = 2h0ð Þ= exp i2k2h0ð Þui x2 = 0ð Þ,s2i x2 = 2h0ð Þ= exp i2k2h0ð Þs2i x2 = 0ð Þ: ð5Þ

3. SEM

The SEM is taken to simulate the guided waves propagating in the stack of elastic layers by considering
the interfacial delaminations in the frequency domain. In addition, the SEM is extended to obtain the
dispersion curves for the unit cells with or without interfacial delaminations imposed by the Bloch–
Floquet boundary conditions.

The weak form of the equations of motion (1) can be obtained by employing the Galerkin method as
[28] ðð

S

sij, j + bi + rv2ui

� �
widx1dx2 = 0, ð6Þ

where wi (i=1, 2) are the test functions, S represents the area of the element, and the repeated subscripts
denote the summation.

The integration by parts and the application of Green’s formula to equation (6) yieldðð
S

sijwi, jdx1dx2 =

ðð
S

rv2ui + bi

� �
widx1dx2 +

þ
R

wifidl, ð7Þ

where fi = sijnj is the component of the traction vector, with nj being the component of the outward unit
normal vector of the boundary R of the domain S. The body forces will not be considered in this paper
by setting bi = 0.
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The domain can be discretized by a number of elements like the conventional FEM. And the displace-
ment components in each element can be approximated by the interpolation or shape functions as

ue
i =

XN

I = 1

ueI
i ce

I x1, x2ð Þ, ð8Þ

where N is the number of the nodes, ueI
i is the displacement component of the Ith node in the eth ele-

ment, and ce
I (x1, x2) is the interpolation or shape function for the 2D problem.

In each element, the Lagrange polynomials are used to approximate the displacement field using the
spectral interpolation nodes. The Gauss–Lobatto–Legendre basis functions are adopted, whose 1D pth
order form is given by Pozrikidis [30]

x
(p)
i jð Þ= �1

p p + 1ð ÞLp jið Þ
1� j2
� �

Lp
0

jð Þ
j � ji

, ð9Þ

where j 2 ½�1, 1�, Lp(ji) and Lp

0
(j) are the pth order Legendre polynomial and its derivative, respec-

tively, and ji (i = 0, 1 � � � p) are the roots of the equation (1� j2)Lp
0
(j) = 0 and are called the spectral

nodes. The interpolation polynomials for the 2D case can be represented by the direct product of two
1D Gauss–Lobatto–Legendre basis functions as

ce
I j,hð Þ= x

(p)
i jð Þx(p)

j hð Þ, ð10Þ

where I is the compound index with a convection relation to the indexes i and j. The global coordinates
(x1,x2) for the nodes in the eth element and the local coordinates (j;h) can be related by x1 = ee

1 + le
1j and

x2 = ee
2 + le

2h, where (ee
1, e

e
2) are the coordinates of the central point of the eth element, le

1 and le
2 are the

length and the width of the element, respectively.
The same interpolation functions ce

I are also employed to approximate the test functions as

we
i =

XN

I = 1

dueI
i ce

I x1, x2ð Þ, ð11Þ

where dueI
i is the virtual displacement component.

The expressions of the discretized form of the components of the stress tensor can be obtained by sub-
stituting equation (8) into equation (2). Then, in view of these expressions and equations (8)–(11), the
discretized form of the weak form of the equations of motion (7) can be achieved. Following the similar
procedure as in the conventional FEM, the matrix form of the discretized algebraic equations can be
written as

Ke � v2Me
� �

ue =Fe, ð12Þ

where

Ke =
K11 K12

K21 K22

� �
,Me =

M11 0

0 M22

� �
, ue =

ue
1

ue
2

� �
,Fe =

Fe
1

Fe
2

� �
, ð13Þ

where ue
1 and ue

2 represent the vectors of the nodal displacements in the eth element, which can be
expressed as

ue
1 = u1

1 u2
1 u3

1 � � � uN
1

� 	T
,

ue
2 = u1

2 u2
2 u3

2 � � � uN
2

� 	T
,

ð14Þ
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Fe
1 and Fe

2 represent the vectors of the nodal forces along the x1- and x2-axes, respectively, in the eth ele-
ment, which are given by

Fe
i =

þ
Le

f e
i ce

1 ce
2 � � � ce

Nf gT �n3le
1dj + n1le

3dh
� �

, i = 1, 2ð Þ, ð15Þ

where Le represents the boundary of the domain of the eth element. The components of the stiffness
matrix can be given by

K11
I 0I =

E 1� nð Þ
1 + nð Þ 1� 2nð Þ I

11
I 0I +

E

2 1 + nð Þ I
22
I 0I ,K12

I 0I =
En

1 + nð Þ 1� 2nð Þ I
12
I 0I +

E

2 1 + nð Þ I
21
I 0I

K21
I 0I =

E

2 1 + nð Þ I
12
I 0I +

En

1 + nð Þ 1� 2nð Þ I
21
I 0I ,K22

I 0I =
E

2 1 + nð Þ I
11
I 0I +

E 1� nð Þ
1 + nð Þ 1� 2nð Þ I

22
I 0I ,

ð16Þ

where

I11
I 0I =

ðð
Se

1

le
1

� �2

∂ce
I 0

∂j

∂ce
I

∂j
det Jð Þdjdh, I22

I 0I =

ðð
Se

1

le
2
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∂ce
I 0

∂h

∂ce
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det Jð Þdjdh,
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Se
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The two nonzero sub-matrices of the mass matrix have the same expression, which can be represented
by

MII 0 =

ðð
Se

rce
I 0c

e
I det Jð Þdjdh: ð18Þ

Both the stiffness matrix and the mass matrix are 2N × 2N symmetric matrices and independent of
the frequency.

The global system of linear algebraic equations can be obtained by the same procedure of FEM as
(K� v2M)u=F and the conventional boundary value problem can be solved in a similar way. In the
following part, the discretized form of the Bloch–Floquet boundary conditions in equation (5) is derived
for the unit cell in the infinite stack of periodic elastic layers, which can be expressed by

DT
N = ei2k2h0DB

N , ð19Þ

where DT
N = f uT

1 uT
2 sT

12 sT
22 g and DB

N = f uB
1 uB

2 sB
12 sB

22 g. Referring to Figure 3, the letters in
the subscripts represent the locations of the nodes in this part, i.e., ‘‘I’’ represents the internal nodes, ‘‘T’’
and ‘‘B’’ represent the nodes on the top and bottom lines, respectively, and ‘‘R’’ and ‘‘L’’ represent the
nodes on the right and left sides of the unit cell, respectively.

In consideration of the discretized form of the Bloch–Floquet boundary conditions (equation (19)),
the displacement vector and the force vector of the unit cell can be reduced to

Figure 3. Schematic diagram of the SEM mesh.
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, ð20Þ

where �u represents the displacement vector of the independent nodes. For the force vector, the condition
of the zero traction on the left and the right boundaries is considered and the relation
fT = sT = ei2k2h0sB = � ei2k2h0fB is used, which is derived based on the expression of the traction
fi = sijnj.

In view of equation (20), the global system equation can be rewritten as

K� v2M
� �

Au�u=F: ð21Þ

Furtherly, multiplying the both sides of equation (21) by Af we get the reduced form of the system
equation as

�K� v2 �M
� �

�u=Af F= 0, ð22Þ

where

�K=Af KAu, �M=Af MAu, ð23Þ

and Af can be calculated as

Af =

I 0 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0

0 0 0 ei2k2h0I 0 0 I 0 0

0 0 0 0 ei2k2h0I 0 0 I 0

0 0 0 0 0 ei2k2h0I 0 0 I

2
6666664

3
7777775
, ð24Þ

where I is an identity matrix.
For the nontrivial solutions to equation (22), the determinant of the coefficient matrix must be zero as

follows

�K� v2 �M


 

= 0: ð25Þ

The dispersion relation of the guided waves in the unit cell imposed by the Bloch–Floquet boundary
conditions can be calculated from equation (25).

4. Numerical results and discussions

In this section, the dispersion curves for the unit cell imposed by the Bloch–Floquet boundary condi-
tions and the transmission spectra for the finite stack of periodic elastic layers are both calculated. The
partial band-gaps of the guided waves propagating in the blocking zone are much critical for the realiza-
tion of unidirectional propagation of the guided waves, in which the propagation of the guided waves
with the specified wave mode is prohibited. Thus, the corresponding dispersion curves are firstly calcu-
lated, which are shown in Figures 4(a)–(c) for the blocking zone with no interfacial delamination, the
array of symmetric central and side interfacial delaminations, respectively. The dispersion curves are
also calculated by COMSOL Multiphysics to verify the computational codes in this paper. For the
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blocking zone with no interfacial delamination, the partial band-gap of symmetric guided wave inter-
sects with the partial band-gap of antisymmetric guided wave, which produces the complete band-gap
where all the guided wave propagation is prohibited. Thus, the guided waves cannot propagate along
both directions in this complete band-gap. However, in the frequency range [0–100 kHz], there is no
partial band-gap of symmetric guided wave for the blocking zone with no interfacial delamination,
which is the limitation of this structure.

To solve this problem, the array of symmetric interfacial delaminations can be inserted into the block-
ing zone, which will not lead to wave mode transformation. The illustration of the array of the sym-
metric interfacial delaminations can be found in Figure 2(b) and the corresponding boundary conditions
are described by equation (4). It is uncovered from Figures 4(b) and 4(c) that the array of symmetric
interfacial delaminations is able to produce separated partial band-gaps of both symmetric and antisym-
metric guided waves in the low-frequency region. Specifically, two extra separated partial band-gaps are
produced by the array of the symmetric central interfacial delaminations (see Figure 4(b)), and three
extra separated partial band-gaps are induced by the array of the symmetric side interfacial delamina-
tions (see Figure 4(c)). The mechanism behind this phenomenon may be revealed through the analysis of
some wave mode shapes corresponding to the nodes on the boundaries of the band-gaps, see Figure 5.
For example, comparing the wave mode shapes C–F with the wave mode shapes A and B, it can be
found that the large deformations happen around the central and the side interfacial delamination since
these band-gaps are generated by the resonance of the elastic layers lying between the two neighboring
interfacial delaminations [28]. Thus, the resonance frequencies can be predicted by the beam fixed at
both sides for the central delamination and by the cantilever beam for the side delamination. In addition,
the wave mode shape F is a special case, which is the only lowest order wave mode for the structure.
Through the comparison of Figure 4(c) with Figures 4(a) and 4(b), it is found that this partial band-gap
of the lowest symmetric guided wave can only be opened by the array of the symmetric side delamina-
tions. The possible mechanism behind this phenomenon is that the natural frequency of the cantilever
beam-like structure formed by the debonded layer between two neighboring side delaminations is lower
than the natural frequency of the corresponding beam-like structure fixed on both sides built by the
debonded layer between two neighboring central delaminations.

In addition, we also find that the partial band-gaps of the antisymmetric guided waves are wider than
the partial band-gaps (see Figure 4). The models presented in Figure 2 can be viewed as beam-like struc-
tures if we rotate them by 90 degrees, and the interfacial delaminations can be considered as a reduction
of the height of a beam. Thus, the symmetric guided wave can be regarded as the longitudinal wave,
while the antisymmetric guided wave can be regarded as the bending or flexural wave, which depend on
the tensile stiffness EA=(Et)w and the bending stiffness EI=(Et/12)w3, respectively, where t is the

Figure 4. The band-gaps of the guided waves propagating in the blocking zone without interfacial delamination (a), and with the
array of symmetric (b) central and (c) side interfacial delaminations, respectively. The black dots represent the results calculated by
COMSOL Multiphysics. The dimensionless quantity �k is defined as 2h0/wavelength. The blue, the purple, and the red shadows
represent the partial band-gaps of symmetric and antisymmetric guided waves and the complete band-gaps, respectively.
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width of the beam and the thickness of the elastic layer w can be regarded as the height of the beam.
Since the tensile stiffness is proportional to w and the bending stiffness is dependent on w3, the variation
of the bending stiffness is stronger than the variation of the tensile stiffness for the same reduction of the
height w of the beam induced by the interfacial delaminations, which may lead to more partial band-
gaps of the antisymmetric guided waves. Hence, we can conclude that the unidirectional propagation of
the antisymmetric guided waves can be more likely generated by inserting the array of the interfacial
delaminations in the low-frequency range.

To verify the above analysis related to the band-gaps, the transmission spectra are calculated. The
transmission of the guided waves over the whole structures along the positive and the negative direc-
tions of x2-axis is analyzed, respectively. The symmetric and the antisymmetric excitations are consid-
ered separately. The symmetric displacement excitation can be denoted by u1=0 and u2= v0 and the
antisymmetric displacement excitation can be denoted by u1= u0 and u2=0. If the excitation is put on
the bottom line of the structure, the receiver should be put on the top line, and vice versa (see Figure 1).
The guided waves would propagate along the positive and the negative directions, respectively, for the
above two cases. The transmission of the guided waves is defined as

Transmission= 20log10
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where u1 and u2 are the displacement components of the node on the line of receiver, D represents the
total displacement of the node on the line of excitation with the length w, i.e., v0 for the symmetric exci-
tation and u0 for the antisymmetric excitation, and �N is the number of the nodes on the line of receiver
or excitation.

The transmission spectra of the guided waves propagating in the stack of periodic elastic layers with-
out interfacial delamination in the blocking zone (see Figure 2(a)) are presented in Figure 6. The spatial
inversion symmetry of the stack is broken due to the insertion of the array of asymmetric interfacial
delaminations. However, for the symmetric excitation, there is no frequency range where the unidirec-
tional transmission of the guided wave exists (see Figure 6(a)). For the antisymmetric excitation, the
unidirectional propagation of the guided waves is realized in the frequency range [90.6–98.5 kHz]. For
example, the guided waves excited at 94 kHz from the bottom line attenuate very quickly (see Figure
7(a)), while the guided waves excited from the top line at the same frequency can transmit over the
whole structure to the bottom line (see Figure 7(b)). The key point behind this phenomenon is that the
symmetric guided waves can be generated when the antisymmetric guided waves pass through the asym-
metric structures or the asymmetric interfacial delaminations, i.e., the transformation zone. Thus, both
of the symmetric and the antisymmetric guided waves exist in the transformation zone at the beginning.

Figure 5. The wave mode shapes (A)–(F) corresponding to the points A–F in Figure 4.
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Then, the antisymmetric guided waves disappear quickly after they enter the blocking zone within the
partial band-gap of antisymmetric guided waves. Finally, only the guided waves with the symmetric
wave mode can transmit over the blocking zone. However, the shortcoming is that the unidirectional
transmission of the symmetric guided waves is relatively low (see Figure 6(b) or 7(b)).

The transmission spectra of the guided waves propagating in the stack of periodic elastic layers with
the array of the symmetric central interfacial delaminations in the blocking zone (see Figure 2(b)) are
presented in Figure 8. Due to the insertion of the array of the symmetric central interfacial delamina-
tions into the blocking zone, the partial band-gap of symmetric guided wave appears in the frequency
range [79.2–87.2 kHz], see Figure 8(a), which agrees with the analysis for the dispersion curves in Figure

Figure 6. Transmission spectra of the guided waves propagating along the positive and the negative directions in the stack of
periodic elastic layers without interfacial delamination in the blocking zone (see Figure 2a) under (a) the symmetric excitation and
(b) the antisymmetric excitation, respectively.

Figure 7. Displacement fields in the stack of periodic elastic layers without interfacial delamination in the blocking zone under the
antisymmetric excitations (a) on the bottom side and (b) on the top side at 94 kHz. The dotted lines denote the interfaces between
the transformation zones and the blocking zones.
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4(b). Thus, the unidirectional propagation is possible for the symmetric excitation (see Figures 9(a) and
9(b)). The symmetric guided waves at 85 kHz excited on the bottom line cannot propagate along the
positive direction of x2-axis over the blocking zone within the partial band-gap of symmetric guided
wave (see Figure 9(a)). However, the guided waves induced by the same excitation propagating from
the top line can transmit over the blocking zone successfully due to the generation of the antisymmetric
guided waves in the transformation zone. And the antisymmetric guided waves can pass through the
blocking zone since the partial band-gaps of the symmetric and the antisymmetric guided waves are
separated. For the antisymmetric excitation, there are two frequency ranges [62.7–65.5 kHz] and [88.8–
98.9 kHz], in which the unidirectional transmission of the guided waves can be realized. For example,

Figure 8. Transmission spectra of the guided waves propagating along the positive and the negative directions in the stack of
periodic elastic layers with the array of the symmetric central interfacial delaminations in the blocking zone (see Figure 2(b)) under
(a) the symmetric excitation and (b) the antisymmetric excitation, respectively.

Figure 9. Displacement fields in the stack of periodic elastic layers with the array of the symmetric central interfacial delaminations
in the blocking zone under the symmetric excitations (a) on the bottom line and (b) on the top line at 85 kHz, and under the
antisymmetric excitations (c) on the bottom line and (d) on the top line at 64 kHz. The dotted lines denote the interfaces between
the transformation zones and the blocking zones.
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Figures 9(c) and (9d) show that the guided waves excited by the antisymmetric source at 64 kHz can
only propagate from the top line to the bottom line.

The transmission spectra of the guided waves propagating in the stack of periodic elastic layers with
the array of the symmetric side interfacial delaminations in the blocking zone are presented in Figure 10.
From the transmission spectra, the unidirectional transmission of guided waves are obviously observed
in the frequency range [24.5–27.7 kHz] for the symmetric excitation and the frequency ranges [33.1–
57.7 kHz] and [65.2–76.6 kHz] for the antisymmetric excitation. The partial band-gap [89.1–91.1 kHz] of
symmetric guided waves cannot be observed obviously from Figure 10(a), which, however, can be found
from the dispersion curves in Figure 4(c). The reason is that the attenuation of the symmetric guided
waves is small when they pass through the blocking zone due to the finite number of unit cells. In addi-
tion, this partial band-gap is very close to the complete band-gap, which leads to a low unidirectional
transmission. As examples, the unidirectional propagations of the guided waves excited symmetrically at
25 kHz and antisymmetrically at 40 kHz are both shown in Figure 11.

The advantages of the array of the symmetric central and side interfacial delaminations in the block-
ing zones can be uncovered from the comparison of the dispersion curves in Figures 4(a)–4(c). The array
of the symmetric central interfacial delaminations can generate a larger partial band-gap of symmetric
guided waves and realize the relatively high unidirectional transmission of the guided waves. The array
of the symmetric side interfacial delaminations can give rise to a partial band-gap of the lowest sym-
metric guided wave and induce more and wider partial band-gaps of antisymmetric guided waves in the
low-frequency range.

5. Concluding remarks

The unidirectional propagation of guided waves is theoretically explored in the stack of periodic elastic
layers with an array of interfacial delaminations. The whole structure consists of two parts and the con-
cept of wave mode transformation is adopted. The array of asymmetric interfacial delaminations is
intentionally inserted into the top part of the finite stack to change the mode of the guided wave. We call
this top part the transformation zone. The bottom part composed of the periodic elastic layers can be
used to block the propagation of the guided waves with the specified mode within the partial band-gaps.
Thus, the separated partial band-gaps are much crucial for the realization of the unidirectional propaga-
tion of the guided waves. The bottom part is called the blocking zone. However, the shortcoming of the
blocking zone without interfacial delamination is that the partial band-gap of symmetric guided waves

Figure 10. Transmission spectra of the guided waves propagating along the positive and the negative directions in the stack of
periodic elastic layers with the array of the symmetric side interfacial delaminations in the blocking zone (see Figure 2(c)) under
(a) the symmetric excitation and (b) the antisymmetric excitation, respectively.
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does not exist in the low-frequency range. To solve this problem, the array of symmetric central or side
interfacial delaminations is inserted into the blocking zone to gain more band-gaps, especially the sepa-
rated partial band-gaps.

The transmission spectra of the guided waves propagating in the finite stack of periodic elastic layers
with interfacial delaminations and the dispersion curves for the unit cell imposed by the Bloch–Floquet
boundary conditions are both calculated by the SEM. Then, we numerically confirm that the symmetric
(antisymmetric) guided waves excited from the bottom side cannot propagate over this structure in the
partial band-gaps of symmetric (antisymmetric) guided waves, the same guided waves, however, excited
on the top side can transmit over this structure successfully with the changed mode. In addition, the
introduction of the array of the symmetric central or side interfacial delaminations into the blocking
zone can efficiently enlarge the frequency ranges where the unidirectional transmission of the guided
waves is allowed. Through the comparison of the partial band-gaps and the wave transmittance, the
advantages of the array of the symmetric central and side interfacial delaminations in the blocking zones
are uncovered for the symmetric and the antisymmetric excitations, respectively.

The proposed structure may have potential applications in the field of wave propagation isolation
and information processing. In addition, we suggest a new concept to control the wave propagation in
phononic crystals using interfacial delaminations or cracks.
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