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Elastic metasurfaces have become one of the most promising platforms for manipulating mechanical
wavefronts with the striking feature of ultra-thin geometry. The conventional design of mechanical meta-
surfaces significantly relies on numerical, trial-and-error methods to identify structural parameters of the
unit cells, which requires huge computational resources and could be extremely challenging if the meta-
surface is multi-functional. Machine learning technique provides another powerful tool for the design of
multi-functional elastic metasurfaces because of its excellent capability in building nonlinear mapping
relation between high-dimensional input data and output data. In this paper, a machine learning network
is introduced to extract the complex relation between high-dimensional geometrical parameters of the
metasurface unit and its high-dimensional dynamic properties. Based on a big dataset, the well-
trained network can play the role of a surrogate model in the inverse design of a multi-functional elastic
metasurface to significantly shorten the time for the design. Such method can be conveniently extended
to design other multi-functional metasurfaces for the manipulation of optical, acoustical or mechanical
waves.
� 2023 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Precise wavefront manipulation of acoustic and elastic waves is
of great significance in both academic and industrial communities.
However, due to the mass law, traditional low-frequency wave-
front manipulation with natural materials suffers from bulky
geometry. This problem can be well addressed by the application
of mechanical metasurface, a low-dimensional mechanical meta-
material [1–6]. While a carefully designed metasurface element
can provide a local phase shift to the incoming wave, a series of
such metasurface elements can realize a certain phase profile,
achieving arbitrary manipulation of the wavefront through gener-
alized Snell’s law.

The concept of metasurface was first proposed in the field of
optics. Yu et al. [7] designed a dielectric optical antenna which
can fulfill, based on its geometry, a full 2p phase shift span for both
reflected and refracted light waves. An array of such antennas with
subwavelength separation and carefully designed phase distribu-
tion form a gradient metasurface with excellent wavefront regula-
tion performance for both reflected and refracted waves. This
concept was then extended to the field of acoustics and has subse-
quently led to the development of labyrinthine [8,9], Helmholtz
resonant [10] and adjacent-wave-coupling [11] acoustic metasur-
faces. Acoustic metasurfaces have shown excellent subwavelength
wave manipulation functions, including near or far field focusing,
transmission deflection, total reflection, planar diffuser, etc. [12–
14]. In the comparison with the optical and the acoustic predeces-
sors, wavefront manipulation of elastic wave requires much more
complicated designs, mainly due to the nature of modal coupling
of elastic waves [15–17]. The local phase shift of the elastic wave
depends mainly on the propagation distance and the wave velocity
in the metasurface element. The labyrinth metasurface is designed
based on the modulation of propagation distance [18]. Thus far,
most of the existing elastic metasurfaces were designed based on
either mass or stiffness modulation to cover a full 2p phase shift
span [18–20]. In those designs, the impedances of the metasurfaces
are generally not considered, resulting in low transmission of the
waves. The impedance of a metasurface element is related to the
multiplication of its effective mass and stiffness. Thus, simultane-
ously controlling the effective mass and stiffness can be a solution
to achieve 2p local phase control while maintaining high transmis-
sion ratio. Based on this principle, Lee et al. proposed a mass-
stiffness substructuring method to design elastic metasurfaces,
demonstrating beam steering and focusing functions for longitudi-
nal waves with nearly perfect transmission condition [21]. The
metasurface element includes two independent mass and stiffness
substructures, responsible for generating independently tailorable
effective mass density Meff and stiffness Keff , respectively. Conse-
quently, the element can realize simultaneously a 2p local phase
shift span (phase velocity v � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Keff =Meff

p
) and high transmission

(impedance matching Z � KeffMeff ) at certain frequencies. How-
ever, the search of optimal design parameters for such metasur-
faces highly relies on a cumbersome, repeated parameter-sweep
process and inefficient post processing of the simulation data. Fur-
thermore, it can be extremely difficult to deal with higher-
dimensional problems, especially for the designing of multi-
functional metasurfaces [22–24]. One way to tackle this issue is
to utilize the topological optimization algorithm and search for
multiple objects [25–27]. However, in these optimization scenar-
ios, a huge number of finite element method (FEM) simulations
are required in each generation, making the inverse design inevita-
bly cumbersome and time-consuming. As a result, the conven-
tional optimization method is far from optimal for the design of
multi-functional metasurfaces.
2

Recent development of artificial intelligence reveals that
machine learning technique can serve as a powerful tool in build-
ing nonlinear mapping relation between high-dimensional input
and output data, making it an excellent candidate in designing
multi-functional metasurfaces. In 2006, Hinton and Salakhutdinov
found that multilayer neural network has excellent feature extrac-
tion ability, facilitating the rapid development of machine learning
[28]. The essence of machine learning is an interconnected multi-
layer nonlinear neural network. To mine the inherent correlation
involved in the training data, a mapping relationship between
the input and output layers can be established by using a back-
propagation algorithm. Due to its powerful feature extraction per-
formance, data fitting, and high-dimensional data processing capa-
bility, machine learning has been successfully applied in many
fields such as language and speech processing [29,30], visual recog-
nition [31,32], pharmaceutical field [33] and financial field [34].
For example, the deep learning was employed to design the meta-
surface for the absorption of microwaves [35]. However, its appli-
cation in mechanical systems is still in its infancy, and there have
been few relevant research achievements reported yet. Li et al. [36]
combined autoencoder and multilayer perceptron to achieve a
reverse mapping from a band structure to a mechanical structure.
Zhu et al. [37] used pre-trained Inception V3 network for migration
training to rapidly predict acoustic metasurface phase transition
parameters. Zhang et al. [38] applied generative adversarial net-
work (GAN) to the rapid generation of mechanical metamaterials
with good noise reduction. Recently, Yaw et al. [39] employed
machine learning for the design of a novel elastic metasurface to
convert longitudinal waves to SV waves with high efficiency. All
these works have confirmed that the machine learning approach
possesses excellent high-dimensional modeling capabilities.

In this paper, we employ the machine learning approach to
establish the mapping from the high-dimensional geometrical
parameters of an elastic metasurface to its high-dimensional
dynamic parameters: transmission coefficients and local phase
shifts for various frequencies. Based on the resulting forward map-
ping network, we propose a fast data-driven inverse design
method for the realizations of a single-functional metasurface,
which executes beam deflection, and a dual-functional metasur-
face, which demonstrates focusing and beam deflection functions
at distinct frequencies. High accuracy of the network is observed,
and the designing time required for both types of metasurfaces
can range from several seconds to several minutes, depending on
the dimension of the designing target. The use of the proposed
machine learning technique greatly reduces computational
resources when compared with other optimization approaches.
Therefore, the proposed machine-learning-based design principle
can serve as a versatile platform for the design of next-
generation multi-functional metasurface in engineering
applications.
2. Inverse design of multi-functional elastic metasurface

According to Lee et al. [21], high transmission is achievable with
the independent modulation of the effective stiffness and mass of a
metasurface element. Here we use a similar element design to con-
struct the dual-functional metasurface, with its unit cell shown in
Fig. 1. For easier fabrication, chamfering is introduced to the struc-
ture. In the unit cell, the groove lengths l and L control the effective
stiffness and effective mass, respectively. The width of the grooves
is 0.5 mm.

As multiple degrees of freedom are required by the dual func-
tions, we combine two metasurfaces, with each composed of
four-unit cells (Fig. 2). The two metasurfaces are denoted by ‘‘1”



Fig. 1. The structure of the unit cell.
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and ‘‘2”. The lengths of their respective grooves are represented by
li and Li ði ¼ 1;2Þ. The geometrical parameters are input into the
commercial FEM software COMSOL Multiphysics to simulate the
transmission coefficients Ti (i = 1, 2) in the frequency domain.
3� 105 FEM simulations are conducted to collect the transmission
coefficients to form an output dataset, and the corresponding geo-
metrical parameters are collected as an input dataset, after which
the input and output dataset are inserted into a Multi-Layer Per-
ceptron (MLP) network to mine the complex relation between
the geometrical parameters and the transmission characteristics.

We excited longitudinal waves on the left of the metasurface at
frequencies f 1 ¼ 80kHz and f 2 ¼ 100kHz. Due to the existence of
the metasurface unit, there exist two kinds of waves in the left
background: incident and reflected waves. According to Ref [2],
the wave transmission T can be obtained as

T ¼ 2uR

1þ iuL
ð1Þ
Fig. 2. Geometry of the metasurface and the

3

in which i ¼
ffiffiffiffiffiffiffi
�1

p
, uR being the output longitudinal displacement on

the right of the metasurface, and uL is the longitudinal displacement
measured at a point k=4 far away from the excitation, with k being
the operating wavelength.

We randomly generated 3� 105 groups of geometrical parame-
ters and imposed these data to COMSOL Multiphysics to conduct
FEM simulations in the frequency domain. Then we collected the
data set including the transmission T1 for the frequency f 1 and
T2 for f 2. Subsequently, we used 70 % of them for learning, 15 %
for validation and the rest for testing. Since the network can only
deal with real-valued data, we separated the complex transmis-
sions T1 and T2 into four groups, i.e., ReðT1Þ, ImðT1Þ, ReðT2Þ and
ImðT2Þ. This new data set was then employed in the training of
the deep learning network formed by a four-component input
layer, a 30� 30� 30� 30� 30 hidden layer, and a four-
component output layer. The fitnet program in MATLAB was used
to build and train the network with a Levenberg-Marquardt back-
propagation optimizer. The training ratio was set as 0.01. This net-
work was then trained to learn the mapping functions
T1 l1; L1; l2; L2ð Þ and T2 l1; L1; l2; L2ð Þ.

When randomly generating the geometrical parameters, we set
a constraint to the generator. For instance, the real part of the
transmission T1 l1; L1; l1; L1ð Þ is shown in Fig. 3. We can see that in
some areas the mapping verifies smoothly with respect to l1 and
L1. However, in certain areas this mapping changes sharply, requir-
ing more data points in these areas. Therefore, we divided the total
sweeping domain of l1; L1ð Þ into six subdomains as shown in Fig. 3.
Similar data distribution is obtained for geometrical parameters l2
and L2.

The training process is shown in Fig. 4(a), with the green circle
standing for the stopping point: the training stops when the valida-
tion minimum mean square error (MSE) (the green solid line) can-
not become smaller in the following 6 steps. We can see that the
network is well trained. The MSE of the validation reaches
5:55� 10�4. We choose 1000 data from the testing dataset to check
the accuracy of the network. The histogram of the relative error
defined as Tprediction � TFEM

� �
=TFEM

�� �� is shown in Fig. 4(b), fromwhich
we can see that about 95.7 % of the prediction errors are within 1 %,
which means our network can accurately predict the transmission
coefficient and local phase shift once the geometrical parameters l
and L are given. We also plot the transmission coefficient and local
sketch of the machine learning network.



Fig. 3. Real part of transmission parameter T1 as a function of l1 and L1. The
distribution of data is also presented, with the color standing for the real part of T1.
The values in the blocks represent the numbers of the generated geometric data.
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phase shift of these 1000 testing data in Fig. 4(c) and 4(d), respec-
tively. The cycle marks represent the prediction result from the
network, while the star marks are for the true results from FEM
simulations. We can observe that the predicted results match very
well with the simulation results. Again, this proves that the net-
work can accurately predict the transmission parameters of the
metasurface and is a proper candidate for design of metasurface.
Fig. 4. (a) Training process; (b) Histogram of prediction error of the network; (c

4

2.1. Inverse design of mechanical metasurface

In a traditional inverse design of multi-functional metasurface
based on topological optimization, hundreds of generations are
needed. In each generation, from tens to thousands of FEM simula-
tions are required to be conducted, making the traditional opti-
mization of multi-functional metasurface extremely
cumbersome. To overcome this problem, we propose to use the
well-trained network as a surrogate model to replace the time-
consuming FEM simulations in each optimization generation as
shown in Fig. 5. By doing so, we can inversely obtain the desired
geometrical parameters within a short time after providing a target
phase profile.

It should be noted that the data collection for deep learning
costs a long time, but this can be easily accelerated by using paral-
lel simulations. In fact, we conducted tens of COMSOL simulations
simultaneously. Subsequently, the training and application for
inverse design is fast. Let us consider a scenario when we first
inversely design a metasurface for a certain function and then
the design changes. The convolutional optimization method needs
to completely repeat the heavy simulation. However, for the
inverse design based on deep learning, the data collection does
not need to be repeated, leading to extremely fast design of the
new metasurface. This highlights the advantage of the inverse
design method proposed in our paper.
2.2. Inverse design of a single-functional mechanical metasurface

Our design method can be easily applied to design a single-
functional elastic metasurface. Let us consider the design of a pla-
) and (d): comparison between network prediction and the FEM simulation.



Fig. 5. Schematic of the machine learning network as a surrogate model to inversely design the dual-functional metasurface element. The fitness evaluation that contains a
large number of FEM simulations is improved by replacing these FEM simulations by fast prediction of MLP network, making the inverse design fast and accurate.
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nar metasurface lens for far field focusing. The phase profile of the
lens is

u yð Þ ¼ k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2L þ y2

q
� f L

� �
ð2Þ

where k0 ¼ 2p=kL, kL is the longitudinal wavelength at 100 kHz, and
f L is the focal length of the lens. We set f L ¼ 0:15m, and the target
phase profile is shown as the black solid curve in Fig. 6(a). Based
on the well-trained network, we can obtain the desired structural
parameters of the metasurface elements, whose transmission coef-
ficient is larger than 0.9, and the true phase profile calculated from
COMSOL Multiphysics is plotted as red star marks in Fig. 6(a). We
can see that the red marks exactly overlap with the target phase
profile, meaning that the network accurately predicts the transmis-
sion performance of the metasurface. We then input these geomet-
rical parameters into COMSOL Multiphysics and conduct the
corresponding simulation. As shown in Fig. 6(b), a line excitation
locates at the left boundary of the thin plate (of 0.5 mm thickness),
and perfect matched layers (PMLs) are designated for the other
three boundaries. The color stands for the strain energy distribution
of the wave field, from which we can see the transmitted waves are
Fig. 6. (a) Phase profile of the planar lens and (b)
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focused at a point about 0.15 m away from the metasurface, agree-
ing well with our design target.
2.3. Inverse design of dual functional mechanical metasurface

For the design of a dual-functional elastic metasurface, we set
the transmission limit as 0.85, meaning that the transmission coef-
ficients at frequencies 80 kHz and 100 kHz are larger than 0.85. As
an example, we obtain a 6-bits metasurface elements as a funda-
mental base to design the dual-functional metasurface (see
Table A1 in Appendix). The 6-bits fundamental base consists of
8� 8 elements. It takes a few minutes to establish the whole data-
base. The phases and transmission coefficients of this 6-bit base are
shown in Fig. 7(a) for 80 kHz and Fig. 7(b) for 100 kHz. The trans-
mission coefficients highlighted in green are very close to 1. More-
over, the cycles are the phases from network prediction, while the
stars are from FEM simulations. Good agreement can be seen
between the network prediction and FEM simulations.

First, let us consider the dual-functional deflection function. Our
design target is for the metasurface to exhibit deflection angles of
300 at 80 kHz and of �300 at 100 kHz. As is shown in Fig. 8(a) and 8
strain energy distribution of the planar lens.



Fig. 7. Dynamic parameters of the 6-bits base for (a) 80 kHz and (b) 100 kHz.

Fig. 8. Dual-functional metasurface realizing deflection of 30
�
at 80 kHz and deflection of�30

�
at 100 kHz. (a) The phase profile at 80 kHz. (b) The phase profile at 100 kHz. (c)

The numerically obtained longitudinal displacement field at 80 kHz; (d) The numerically obtained longitudinal displacement field at 100 kHz.
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(b), we use the 6-bit base to mimic the target phase profile of the
deflection, i.e.

u80 yð Þ ¼ 2p
k80

sin �p=3ð Þy;

u100 yð Þ ¼ 2p
k100

sin p=3ð Þy: ð3Þ

Here k80 and k100 are the longitudinal wavelengths at 80 kHz
and 100 kHz, respectively. Then the corresponding geometrical
parameters are inserted into numerical simulations to attain the
frequency responses. The displacement fields at 80 kHz and
6

100 kHz are shown in Fig. 8(c) and 8(d), from which we clearly
see the dual-functional deflection, with the distinguishable deflec-
tion angles of 300 at 80 kHz and of �300 at 100 kHz.

Next, we consider a dual-functional metasurface behaving as a
planar lens at 80 kHz and wave deflector at 100 kHz. The target
phase profiles are

u80 yð Þ ¼ 2p
k80

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2L þ y2

q
� f L

� �
;

u100 yð Þ ¼ 2p
k100

sin p=3ð Þy: ð4Þ



Fig. 9. Dual-functional metasurface composing of planar lens with focusing length 0:12 m at 80 kHz, and deflection 300 at 100 kHz. (a) The phase profile at 80 kHz; (b) The
phase profile at 100 kHz; (c) the displacement field at 80 kHz; (d) the displacement field at 100 kHz.
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Here, f L ¼ 0:12m. We use the 6-bits base to mimic these phase
profiles, and the corresponding results are displayed in Fig. 9(a)
and 9(b). Then we conduct harmonic simulations to verify our
design. The obtained displacement field at 80 kHz, as shown in
Fig. 9(c) indicates that the transmitted waves are focused at a point
about 0.12 m away from the metasurface, which agrees well with
our design target. The displacement field at 100 kHz shown in
Fig. 9(d) illustrates the deflection with an angle being about 300,
again agreeing well with the other design target.
2.4. Experimental validation

In order to verify the beam control capability of our dual-
function metasurface, we first fabricate the metasurface structure
(380 � 72 � 1 mm) from 6061 thin aluminium plate
(800 � 1000 � 1 mm) by precision cutting, with the prototype
shown in Fig. 10(a). The reason for using 6061 thin aluminium
plate to process metasurface is that the tensile strength rb is
greater than or equal to 180 MPa, and its yield strength r0:2 is
greater than or equal to 110 MPa, which has good processing per-
formance and toughness. The minimum size of the metasurface
7

structure was 0.5 mm, and the error of length and width was con-
trolled within 50 lm. The structural parameters of aluminium
plate are obtained from our numerical simulations. As shown in
Fig. 10(b) and 10(c), the testing system mainly includes a scanning
Laser Doppler vibrometer (LDV) system, an aluminium plate with a
dual-functional metasurface, a function generator SDG2042X and a
power amplifier ATA-3080. To produce a longitudinal plane wave
in the aluminium plate, a magnetostrictive transducer was
designed and placed on the aluminium plate with an iron-cobalt
belt. A magnetic field perpendicular to the plate is applied on the
iron-cobalt belt. Thus, the fundamental symmetric Lamb waves
(S0 wave) to mimic the longitudinal wave were excited in alu-
minium plate by the magnetostrictive effect. To improve the
signal-to-noise ratio, the signals are averaged 20 times, and a dig-
ital band-pass filter is also implemented.

The wavefields at both frequencies after postprocessing are
shown in Fig. 11(a) and 11(b). It can be experimentally observed
from Fig. 11(a) that the waves are focused at a point about
0.12 m away from the metasurface. This observation confirms
our numerical prediction shown in Fig. 9(c). The wave deflection
presented in Fig. 11(b) illustrates a deflection angle of about 300,
which also agrees well with our numerical prediction given in



Fig. 11. (a) The experimental displacement field at 80 kHz; (b) the experimental displacement field at 100 kHz.

Fig. 10. Experimental set. (a) the prototype of the dual-functional metasurface; (b) experimental platform; (c) the signal generator, transformer, amplifier and detector.
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Fig. 9(d). Overall, our experimental demonstration confirms that
the dual-functional metasurface exhibits two different functions,
namely focusing at 80 kHz and beam deflection at 100 kHz. More
importantly, the dual-functional metasurface can be fast and accu-
rately designed based on the proposed machine learning method.
8

3. Conclusion

In this paper, we propose to employ the machine learning tech-
nique to develop a fast inverse design method for multi-functional
elastic metasurface. We start from designing a single functional
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metasurface, by using a well-trained network that possesses for-
ward mapping from geometrical parameters of metasurface unit
to its dynamic performances as a surrogate model and insert it into
exhaust algorithm. By this means, design of an elastic metasurface
with 39 units can be completed within two seconds. The prediction
frommachine learning network agrees very well with FEM simula-
tions, and based on that we design a planar lens. FEM simulations
show that the focusing length is exactly our design target.

Then we propose to use machine learning to fast design a dual-
functional metasurface. Via big data training, the network can
mine the relation between four geometrical parameters and four
dynamic parameters, which include transmission ratios and local
phase shifts at frequency 80 kHz and 100 kHz. Similar to the surro-
gate exhaust algorithm, various dual-functional metasurfaces can
be fast obtained. As an example, we build a 6-bits design base com-
posing of 64 fundamental units, and it takes about three minutes to
complete the simulation. Based on such 3-bits base, the phase pro-
files of various dual-functional metasurface can be fitted, and then
various dual-functional metasurfaces can be realized. As two typi-
cal examples, we designed a dual-functional metasurface compos-
ing of wave deflection with different angles at two working
frequencies, and a metasurface that works as a planar lens at
80 kHz and as wave deflection at 100 kHz. FEM simulations are
conducted to verify our design, and good agreement can be
observed. We further conducted experimental study to verify the
dual-functional composing of planar lens and deflection, and good
agreement is also observed.

In conclusion, our method based on machine supports both fast
and accurate design of multi-functional metasurface, and it can be
easily extended to design higher order multi-functional acoustic/
optical/elastic metasurfaces, and thus can also find significant
importance in engineering design of elastic metasurfaces.
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Table A1
The 6-bits phase base formed by 64 phase elements.

Phase x1

Phase x2

0
ð0;0;0Þ

p
4ð0;0;1Þ

p
2ð0;1;0Þ

3p
4ð0;1;

0
ð0;0;0Þ

0;0;0ð
0;0;0Þ

0;0;1ð
0;0;0Þ

� �

p
4ð0;0;1Þ

0;0;0ð
0;0;1Þ

0;0;1ð
0;0;1Þ

� �

p
2ð0;1;0Þ

� � � �

3p
4ð0;1;1Þ

� � � �

p
ð1;0;0Þ

� � � �

5p
4ð1;0;1Þ

� � � �

3p
2ð1;1;0Þ

� � � �

7p
4ð1;1;1Þ

0;0;0ð
1;1;1Þ

� � �
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