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A B S T R A C T

The concept of odd elasticity was recently introduced to characterize the elastic behavior of
solids that consist of active components, exhibiting an asymmetric elastic modulus tensor. In
this paper, we propose, for the first time, the microstructure design of an odd plate, which
is composed of a lattice plate with a piezoelectric-patch-based sensor–actuator feed-forward
system. By leveraging the nonreciprocal coupling between shear forces and bending curvatures,
the odd plate constitutive relation is formulated in the low frequency region, which features
as four asymmetric coupling parameters known as ‘‘odd parameters’’. We reveal that the
two-dimensional (2D) odd plates can perform directional wave energy amplification and the
amplification angle can be determined analytically through the rotation of coordinate system.
We also numerically demonstrate the directional wave amplification phenomena that arise from
the optimal combination of odd parameters. In addition, we analytically uncover the presence
of Stoneley-like interfacial waves between two plates with two odd parameters in opposite
signs, which is further characterized by the numerical simulation. Unlike interfacial waves
between topological structures, the interfacial waves between odd plates can exist for any
working frequency, enabling the design of some novel waveguides. This research on the control
of flexural waves in odd plates could shed lights on 2D non-Hermitian systems in elasticity.

. Introduction

In the theory of linear elasticity, the conventional Cauchy medium with symmetry stiffness tensors has widely been accepted as
he foundation of the continuum mechanics, however, the development of passive and active architecture metamaterials offers new
venues and perspectives to challenge and extend the fundamental basics. For example, introduction of chirality into mechanical
etamaterials can break centrosymmetry of the mechanical behavior. In contrast with achiral mechanical metamaterials, chiral
etamaterials exhibit nonzero force–torque coupling and are able to convert one transverse polarized elastic wave into the

rthogonal transverse one, which cannot be captured by the conventional elasticity (Bahaloo and Li, 2019; Shaat and Park, 2023;
iu et al., 2012). Micropolar continuum mechanics under the Cosserat elasticity is then suggested by augmenting micro-rotation
egrees of freedom to characterize the unconventional mechanical behavior (Nassar et al., 2020). Recently, the elastic polar solid
as proposed as a perfect elastic wave cloaking material to possess elastic tensors with broken minor symmetry under frame
f the Cauchy elasticity by introducing internal rotating resonators into hexachiral lattice (Nassar et al., 2019). However, most
assive mechanical metamaterials designed to date are Hermitian systems with energy conservation such that their elastic constants
escribing the constitutive relations between stress and strain tensors under the higher-order theory are naturally symmetric such as
illis media (Milton and Willis, 2007), extreme media (Milton, 2013) and topological materials (Xue et al., 2022). The fundamental
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limitation is that a passive solid cannot exchange energy from its surroundings through any quasistatic cycle of deformations, which
will place additional constraints and freedoms to break symmetry of elastic moduli.

A growing frontier recently emerged on active metamaterials as non-Hermitian systems using external energy for various demands
uch as phononic gain, reconfigurability, or deterministic functionality (Wang et al., 2022; Rosa and Ruzzene, 2020; Gu et al., 2022;
hang et al., 2022; Wu et al., 2023a; Brandenbourger et al., 2019; Yi et al., 2022; Wu et al., 2019; Domínguez-Rocha et al., 2020;
upta et al., 2023). Non-Hermitian systems are generally defined as non-conservative systems where energy loss and/or gain are

nherently present as a result of interactions with the environment that provides an energy source. Significant efforts have been made
o interpret active systems featuring broken spatiotemporal symmetries, as well as violations of reciprocity relations and conservation
aws. Formulating effective continuum theories of active metamaterial results in very general elastic constitutive relations, because
n equilibrium such theories are not based on the elastic potential energy in active systems. Specifically, these active moduli
ould accommodate the antisymmetric (or odd) part of the static elastic modulus tensor giving rise to a loss of major symmetry,
.e., 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 , which is also termed as odd elasticity and odd elastodynamics (Scheibner et al., 2020b; Gao et al., 2022; Tan et al.,
022; Binysh and Souslov, 2022). From the mathematical point of view, the parity-time-reversal (PT) symmetry will be broken once
he complex eigenvalues and non-orthogonal eigenmodes of the system appear, which are associated with exceptional points (El-
anainy et al., 2018). The physical exploration of active microstructure designs is concurrently devoted to realizing peculiar material
roperties presenting non-Hermiticity outside of conventional media (Wu et al., 2023b). The active material displaying odd elasticity
as been experimentally demonstrated by introducing piezoelectric elements and motors controlled by electrical circuits, or spinning
etworks, into host media (Chen et al., 2021; Brandenbourger et al., 2021). Additionally, these non-Hermitian systems with odd
lasticity exhibit non-Hermitian one-dimensional (1D) and 2D skin effect and non-Hermitian Rayleigh wave propagation (Cheng and
u, 2021; Gao et al., 2022; Scheibner et al., 2020a). Recently, active robotic materials were demonstrated to perform basic robotic
anipulations such as steering motion and forces (Brandenbourger et al., 2021). Obviously, more feasible active microstructures

re needed to explore more interesting non-Hermitian phenomena, especially the higher dimensional structures which allow more
nteresting wave controls and manipulations beyond the 1D system (Fruchart et al., 2023). It is thus intriguing to ask: how can
e physically realize active bonds to form non-Hermitian mechanical 2D plates of odd elasticity? what is the unprecedented wave
anipulation abilities in 2D active media which are never reported before? can interfacial waves exist in 2D non-Hermitian elastic

ystem similar to their optical counterparts (Moccia et al., 2020)?
In this paper, we first aim to realize active microstructure design of a 2D non-Hermitian odd plate with feedforward interactions

nd explore a series of unconventional wave phenomena when conventional plate mechanics meets with non-Hermiticity. We report
type of active building blocks that contain an electrical control loop with multiple piezoelectric sensor–actuator-pairs. Assembling

hose active building blocks periodically constructs the 2D odd plate metamaterial with nonreciprocal coupling between bending
oments and shear forces. The nonreciprocal wave amplification and attenuation phenomena and the direction-dependent dispersion

ontrol of flexural waves in the 2D odd plates are numerically shown. We analytically explain these phenomena and find that the
etaplate breaks major symmetry of its effective elastic tensor, exhibiting odd plate. In addition, the equations describing the

elation between the different odd coupling parameters are derived by the method of the rotation of coordinate system, by which
he accurate control of the amplification-attenuation direction of flexural waves in odd plates can be realized. More interestingly,
e also discover the localized interfacial wave modes between those finite odd plates. The existence of Stoneley-like interfacial
aves is theoretically proved and numerically demonstrated between two odd plates with different odd parameters. We illustrate

he underlying physical mechanisms and their intriguing properties, and also address possible practical implementations based on
dd plates.

. Microstructure design of an odd plate and its homogenization

The microstructure of the active odd plate is constructed by integrating piezoelectric sensors and actuators connected by a
eed-forward circuit system with the host plate, which forms an open and non-Hermitian system. Fig. 1(a) illustrates the unit cell of
n active lattice plate, consisting of a hollow plate with two crossing beams. Two slender piezoelectric patches are perpendicularly
ttached at the center on the top and bottom surfaces to serve as sensors and additional four piezoelectric patches are affixed on the
our sides to act as actuators. The difference between a passive lattice and the present active lattice is the presence of internal energy
ources (active beams in this study). The sensor is used to detect the incident wave by measuring the local bending curvature of
he beam, and the actuators are employed to generate desired antisymmetric shear fields through the application of antisymmetric
ctuation voltages (Wu et al., 2022). Transfer functions are encoded in the digital controller and control relations between sensing
nd actuating signals of the active beams. However, the resulting shear deformation does not deform the central piezoelectric
ensing patches. Therefore, the electromechanical control loop is entirely feedforward, which means bending induces shear, while
hear does not induce bending. The schematic of digital control system is presented in Fig. A.1 in Appendix A. The material and
nit cell geometric parameters are listed in Tables 1 and 2, respectively.

In the current design, it is challenging to measure the bending curvatures in the 𝑥- and 𝑦-directions separately using piezoelectric
sensors. To overcome this limitation, a relationship between the two bending curvatures and the voltages collected from the top
(𝑉𝑇 ) and bottom (𝑉𝐵) piezoelectric sensors is numerically constructed as

[

𝑉𝑇
−𝑉𝐵

]

= 𝐶𝑚

[

1 𝛽
𝛽 1

] [

𝐵𝑥
𝐵𝑦

]

, (1)

where 𝐵𝑥 and 𝐵𝑦 denote the bending curvatures in the 𝑥- and 𝑦-directions, respectively, and 𝐶𝑚 and 𝛽 are constant to be
2

numerically determined by using the COMSOL Multiphysics software. It should be pointed out that the top and bottom voltages
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Fig. 1. Design of an active lattice plate with odd elasticity. (a) The lattice structure of the plate is composed of feed-forward systems involving sensor–actuator
loops. The side, top, and front views of the lattice plate’s unit cell are illustrated. (b) The piezoelectric-patch-based feed-forward control enables the coupling
between the sensed 𝑥-directional bending deformation (𝐵𝑥) and the actuated shear deformations (𝑄𝑥 and/or 𝑄𝑦) in different directions.

Table 1
Material parameters for steel and PZT-5J.
𝜌𝑏 7800 kg/m3 𝐸 205 GPa 𝜈 0.3
𝜌𝑝 7400 kg/m3 𝑠11 1.62 × 10−12 Pa−1 𝑠12 −4.54 × 10−12 Pa−1

𝑠13 −5.9 × 10−12 Pa−1 𝑠33 2.27 × 10−11 Pa−1 𝑠44 4.7 × 10−11 Pa−1

𝑠66 4.15 × 10−11 Pa−1 𝑑31 −2.2 × 10−10 C/N 𝑑33 5 × 10−10 C/N
𝑑15 6.7 × 10−10 C/N 𝜖11 1641.3 𝜖33 1143

of the piezoelectric sensors are achieved via the detection of the corresponding electric charges with the relations 𝑉𝑇 = 𝑞𝑇 ∕𝑐0 and
𝑉𝐵 = 𝑞𝐵∕𝑐0, where 𝑞𝑇 and 𝑞𝐵 are the electric charges on the surfaces of the piezoelectric sensors, and 𝑐0 is the reference capacitance,
which is selected as 1.658 pF in this paper. Thus, the sensing voltages related to the bending curvatures in the 𝑥- and 𝑦-directions
can be obtained as

𝑉𝑠𝑥 = 𝑉𝑇 + 𝛽𝑉𝐵 , 𝑉𝑠𝑦 = −𝛽𝑉𝑇 − 𝑉𝐵 . (2)

As seen schematically from Fig. 1(b), the connections between the actuating and sensing voltages are established through the
microcontroller as

𝑉𝑎𝑥 = 𝐻𝑥𝑥𝑉𝑠𝑥 +𝐻𝑦𝑥𝑉𝑠𝑦, 𝑉𝑎𝑦 = 𝐻𝑥𝑦𝑉𝑠𝑥 +𝐻𝑦𝑦𝑉𝑠𝑦, (3)

where 𝐻𝑥𝑥, 𝐻𝑥𝑦, 𝐻𝑦𝑥, and 𝐻𝑦𝑦 are the four transfer functions to be used. In this system, the antisymmetric actuation generates
shear deformations either in one direction or two directions. Thus, the shear deformations can be nonreciprocally coupled with the
bending deformation in the 𝑥- or 𝑦-direction. As a result, the relation between the shear forces and the bending curvatures in the
active plate in Fig. 1 can be constructed as

𝑄𝑥 = 𝑄𝑠𝑥 + 𝑃𝑥𝑥𝐵𝑥 + 𝑃𝑦𝑥𝐵𝑦, (4)

𝑄𝑦 = 𝑄𝑠𝑦 + 𝑃𝑥𝑦𝐵𝑥 + 𝑃𝑦𝑦𝐵𝑦, (5)

where 𝑄𝑠𝑥 and 𝑄𝑠𝑦 are the shear forces on the sections in the 𝑥- and 𝑦-directions, respectively, induced by the shear deformations and
𝑃𝑥𝑥, 𝑃𝑥𝑦, 𝑃𝑦𝑥, and 𝑃𝑦𝑦 are referred to as the parameters related to the transfer functions to be determined numerically. Physically, 𝑃𝑥𝑥
and 𝑃𝑦𝑦 represent the bending–shear couplings along the 𝑥 and 𝑦 directions, respectively, and 𝑃𝑥𝑦 and 𝑃𝑦𝑥 represent the bending–
shear cross couplings between the 𝑥- and 𝑦-directions, respectively. It is worth noting that the value of each parameter can be
independently tuned through the transfer functions, which is one of the primary advantages of the proposed design.
3
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Table 2
Geometric parameters for the unit cell.
𝑙𝑏 50 mm 𝑡𝑏 3 mm ℎ𝑠 6.4 mm 𝑙𝑠 0.64 mm
𝑙𝑤 11 mm ℎ𝑤 6 mm 𝑐𝑓 10 mm 𝑙𝑎 3.75 mm
ℎ𝑎 8 mm 𝑡𝑎 0.25 mm 𝑐𝑎 9.5 mm

The homogenization of the active lattice plate will then be conducted under the framework of the Mindlin plate theory by
ssuming the displacement components as

𝑢𝑥 = 𝑧𝜓𝑥(𝑥, 𝑦, 𝑡), 𝑢𝑦 = 𝑧𝜓𝑦(𝑥, 𝑦, 𝑡), 𝑢𝑧 = 𝑤(𝑥, 𝑦, 𝑡), (6)

where 𝑤 is the 𝑧-directional displacement, and 𝜓𝑥 and 𝜓𝑦 represent the rotation angles of the lines normal to the mid-planes in the
𝑥- and 𝑦-directions, respectively. The bending curvatures can then be represented by

𝐵𝑥 =
𝜕𝜓𝑥
𝜕𝑥

, 𝐵𝑦 =
𝜕𝜓𝑦
𝜕𝑦

, 𝐵𝑥𝑦 =
𝜕𝜓𝑦
𝜕𝑥

+
𝜕𝜓𝑥
𝜕𝑦

, (7)

and the shear strains are

𝛾𝑥𝑧 =
𝜕𝑤
𝜕𝑥

+ 𝜓𝑥, 𝛾𝑦𝑧 =
𝜕𝑤
𝜕𝑦

+ 𝜓𝑦. (8)

he constitutive relation of the active plate can be obtained by combining Eqs. (4)–(8) as

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑀𝑥
𝑀𝑦
𝑀𝑦𝑥
𝑄𝑥
𝑄𝑦

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐷11 𝐷12 0 0 0
𝐷12 𝐷11 0 0 0
0 0 𝐷33 0 0
𝑃𝑥𝑥 𝑃𝑦𝑥 0 𝐺 0
𝑃𝑥𝑦 𝑃𝑦𝑦 0 0 𝐺

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐵𝑥
𝐵𝑦
𝐵𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (9)

here 𝐷11, 𝐷12 and 𝐷33 are the bending stiffnesses, and 𝐺 is the shear stiffness. From Eq. (9), it is interesting to note that the
tiffness matrix of the plate lose the major symmetry due to the asymmetric appearance of the active parameters in the off-diagonal
ntries (𝑃𝑥𝑥, 𝑃𝑦𝑦, 𝑃𝑥𝑦 and 𝑃𝑦𝑥 being nonzero). The plate is referred to as the odd plate, and the active parameters are called the odd
arameters in the following part. As a result, the work in the odd plate can be locally extracted, or injected, during the quasi-static
ycles of plate deformation (Chen et al., 2021).

As a matter of fact, this novel electromechanical coupling in the odd plate is feed-forward: bending deformations cause shear
orces while shear strains do not induce bending moments, which violates Maxwell–Betti reciprocity. In general, one should expect
o observe the odd phenomenon when nonreciprocal shear and bending coupling exists. For instance, the stiffness matrix of the plate
isplays asymmetry in cases where shear induces bending, while bending alone does not induce shear. Odd wave phenomena such
s asymmetric and nonreciprocal wave propagation are expected to occur. It is worth noting that the extent of these odd phenomena
ecomes more prominent with larger values of the odd parameters.

We then quantitatively retrieve the effective elastic tensor of the odd plate. The effective moduli in Eq. (9) can be obtained by
pplying strain-controlled boundary conditions at the terminating faces of a unit cell and analyzing the reaction forces via COMSOL
imulations. The effective bending stiffness, shear stiffness and odd parameters can be determined separately under three different
eformation modes of the plate: bending, shear, and twist modes. For instance, the harmonic rotational angles, 𝜓0

𝑥 and −𝜓0
𝑥 , are

pplied onto the two boundary surfaces in the 𝑥-direction. While the rotations of the other two boundary surfaces in the other
irections are fixed, other displacement components are released to obtain the pure bending deformation in the 𝑥-direction. In this
ay, the effective parameters 𝐷11, 𝐷12, 𝑃𝑥𝑥 and 𝑃𝑥𝑦 can be calculated as 𝑀0

𝑥∕2𝜓
0
𝑥 , 𝑀0

𝑦∕2𝜓
0
𝑥 , 𝑄0

𝑥∕2𝜓
0
𝑥 , and 𝑄0

𝑦∕2𝜓
0
𝑥 , respectively,

here 𝑀0
𝑥 , 𝑀0

𝑦 , 𝑄0
𝑥, and 𝑄0

𝑦 are the reaction bending moments and shear forces in the 𝑥- and 𝑦-directions, respectively. A similar
ethodology can be applied to determine the other effective parameters. The average volumetric density and average cross-sectional
oment of inertia can be directly computed based on the geometry and materials of the unit cell.

Based on the odd constitutive relation in Eq. (9), the governing equations of the odd plate can be written as

𝐺
[

(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2

)

𝑤 + 𝜕2𝜓𝑥
𝜕𝑥 + 𝜕2𝜓𝑦

𝜕𝑦

]

+𝑃𝑥𝑥
𝜕2𝜓𝑥
𝜕𝑥2

+ 𝜕2

𝜕𝑥𝜕𝑦

(

𝑃𝑦𝑥𝜓𝑦 + 𝑃𝑥𝑦𝜓𝑥
)

+𝑃𝑦𝑦
𝜕2𝜓𝑦
𝜕𝑦2

= 𝜌ℎ 𝜕
2𝑤
𝜕𝑡2
,

(10)

𝐷11
𝜕2𝜓𝑥
𝜕𝑥2

+𝐷33
𝜕2𝜓𝑥
𝜕𝑦2

+
(

𝐷12 +𝐷33
) 𝜕2𝜓𝑦
𝜕𝑥𝜕𝑦 −𝐺

(

𝜕𝑤
𝜕𝑥 + 𝜓𝑥

)

− 𝑃𝑥𝑥
𝜕𝜓𝑥
𝜕𝑥

−𝑃𝑦𝑥
𝜕𝜓𝑦
𝜕𝑦 = 𝜌ℎ3

12
𝜕2𝜓𝑥
𝜕𝑡2

,
(11)

𝐷33
𝜕2𝜓𝑦
𝜕𝑥2

+𝐷11
𝜕2𝜓𝑦
𝜕𝑦2

+
(

𝐷12 +𝐷33
) 𝜕2𝜓𝑥
𝜕𝑥𝜕𝑦 −𝐺

(

𝜕𝑤
𝜕𝑦 + 𝜓𝑦

)

− 𝑃𝑥𝑦
𝜕𝜓𝑥
𝜕𝑥

−𝑃𝑦𝑦
𝜕𝜓𝑦
𝜕𝑦 = 𝜌ℎ3

12
𝜕2𝜓𝑦
𝜕𝑡2

.
(12)

where 𝜌 and ℎ are the mass density and the thickness of the plate, respectively. We assume the time-harmonic wave solutions as

𝑤 = 𝑊 𝑒𝑖(𝐤⋅𝐫−𝜔𝑡), 𝜓 = 𝛹 𝑒𝑖(𝐤⋅𝐫−𝜔𝑡), 𝜓 = 𝛹 𝑒𝑖(𝐤⋅𝐫−𝜔𝑡), (13)
4
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T

where 𝐤 = 𝑘𝑥𝐞𝑥 + 𝑘𝑦𝐞𝑦, 𝐫 = 𝑥𝐞𝑥 + 𝑦𝐞𝑦, 𝐞𝑥 and 𝐞𝑦 are the base vectors in the 𝑥- and 𝑦-directions, respectively. The components of
the wave vector is given by 𝑘𝑥 = |𝐤| cos 𝜃 and 𝑘𝑦 = |𝐤| sin 𝜃, with 𝜃 indicating the wave propagation direction. Substituting Eq. (13)
into Eqs. (10)–(12), the governing equations for flexural waves can be recast into a dimensionless matrix form as

⎛

⎜

⎜

⎝

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

�̄�
𝛹𝑥
𝛹𝑦

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0
0
0

⎞

⎟

⎟

⎠

, (14)

where

𝑐11 = 𝛺2 −
(

�̄�2𝑦 + �̄�
2
𝑥

)

, 𝑐12 = 𝑖�̄�𝑥 − 𝑃𝑥𝑥�̄�2𝑥 − 𝑃𝑥𝑦�̄�𝑥�̄�𝑦,

𝑐13 = 𝑖�̄�𝑦 − 𝑃𝑦𝑥�̄�𝑥�̄�𝑦 − 𝑃𝑦𝑦�̄�2𝑦, 𝑐21 = −𝑖�̄�𝑥,

𝑐22 =
𝛺2

12
− �̄�11�̄�

2
𝑥 − �̄�33�̄�

2
𝑦 − 1 − 𝑖𝑃𝑥𝑥�̄�𝑥,

𝑐23 = −
[(

�̄�12 + �̄�33
)

�̄�𝑥�̄�𝑦 + 𝑖𝑃𝑦𝑥�̄�𝑦
]

,

𝑐31 = −𝑖�̄�𝑦, 𝑐32 = −
[(

�̄�12 + �̄�33
)

�̄�𝑥�̄�𝑦 + 𝑖𝑃𝑥𝑦�̄�𝑥
]

,

𝑐33 =
𝛺2

12
− �̄�33�̄�

2
𝑥 − �̄�11�̄�

2
𝑦 − 1 − 𝑖𝑃𝑦𝑦�̄�𝑦.

he above dimensionless quantities are defined as

𝛺2 =
𝜌𝜔2ℎ3

𝐺
, �̄�𝑥 = 𝑘𝑥ℎ, �̄�𝑦 = 𝑘𝑦ℎ, 𝑃𝑥𝑥 =

𝑃𝑥𝑥
𝐺ℎ

, 𝑃𝑦𝑦 =
𝑃𝑦𝑦
𝐺ℎ

,

𝑃𝑥𝑦 =
𝑃𝑥𝑦
𝐺ℎ

, 𝑃𝑦𝑥 =
𝑃𝑦𝑥
𝐺ℎ

, �̄�11 =
𝐷11

𝐺ℎ2
, �̄�12 =

𝐷12

𝐺ℎ2
, �̄�33 =

𝐷33

𝐺ℎ2
.

To obtain the nontrivial solutions to Eq. (14), the matrix determinant should be zero:
|

|

|

|

|

|

|

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

|

|

|

|

|

|

|

= 0. (15)

The dispersion relation for flexural waves propagating in the odd plate can be obtained by solving Eq. (15).
The dispersion relation for the flexural waves propagating in the active lattice, as depicted in Fig. 1, can be obtained by applying

the periodic boundary conditions to the corresponding unit cell. The comparison of the equi-frequency contours for the real parts of
eigenfrequencies are shown in Fig. 2(a) and (c), and the comparisons for the corresponding imaginary parts are shown in Fig. 2(b)
and (d). Two types of unit cells are considered, differing only in their transfer functions or odd parameters. In Fig. 2(a) and (b), the
nonzero odd parameters are 𝑃𝑥𝑥 = 𝑃𝑦𝑦 = 1.96 for the nonzero transfer functions 𝐻𝑥𝑥 = 𝐻𝑦𝑦 = 6, while in Fig. 2(c) and (d), they read
𝑃𝑥𝑦 = 1.96 for 𝐻𝑥𝑦 = 6. The remaining plate moduli are calculated as 𝜌eff = 6046.93 kg∕m3, 𝐺 = 1.68 × 106 N∕m, 𝐷11 = 291.28 N m,
𝐷12 = 51.60 N m, 𝐷33 = 121.96 N m, and 𝛽 = 0.28.

It should be noted that the comparisons of the equi-frequency contours for the real parts of eigenfrequencies in Fig. 2(a) and (c)
exhibit excellent agreements, while some discrepancies are observed in Fig. 2(b) and (d) through the comparisons of the contours for
the corresponding imaginary parts, which is caused by the nonreciprocal coupling between bending deformation and shear stress in
the active lattice. To further understand the reason for these discrepancies, the shear deformation fields caused by the active beams
within the unit cell are illustrated in Fig. B.1 in Appendix B. It is clearly evidenced that the distribution of actively applied shear
stresses is non-uniform and predominantly concentrated at the positions of the active beams even for the static case. The uneven
active stresses are responsible for the discrepancies of the imaginary parts of eigenfrequencies between the active lattice and the
effective plate in Fig. 2(b) and (d). In particular, in the scenario depicted in Fig. 2(d), where there is just one active beam in the
𝑦-direction, the discrepancies remain relatively minor when the wave travels in a direction close to the 𝑦-axis. These discrepancies
grow as the wave propagation deviates from this direction. However, the discrepancies around the 𝑥-axis are not obvious since
the magnitudes of the imaginary parts of eigenfrequencies are small around this direction. The reason behind this phenomenon is
that the effects of the applied shear stresses on the waves propagating away from the 𝑦-direction become smaller. As a comparison,
for the case of the unit cell with two orthogonal active beams in Fig. 2(b), the shear deformation caused by the two active beams
is much more uniform. As a result, the discrepancy becomes relatively smaller for most wave directions close to both the 𝑥- and
𝑦-directions, compared with the case of one active beam. For this case, the biggest discrepancies occur at the angles 0.25𝜋 and
1.25𝜋; see Fig. 2(b). It can be understood that the two orthogonal active beams have the smallest influences on the frame at the
angles of 0.25𝜋, 0.75𝜋, 1.25𝜋, and 1.75𝜋. However, the discrepancies around the angles 0.75𝜋 and 1.75𝜋 are not obvious due to the
small magnitudes of the imaginary parts of eigenfrequencies since the two active beams have the opposite influences around these
two angles; see Fig. B.1(b). Ideally, the discrepancy can be totally eliminated if the interior active beams are uniformly distributed.

The active lattice plate can also be viewed as an equivalent homogeneous plate composed of orthotropic materials. The
approximate values for the effective Young’s modulus, shear stiffness, and Poisson’s ratio are as follows: 𝐸1 = 𝐸2 = 125.402 GPa,
𝐺12 = 54 GPa, 𝐺13 = 𝐺23 = 0.67 GPa, and 𝜈12 = 0.177. Thus, the iso-frequency contours of the odd plates can also be obtained using
the plate module in COMSOL Multiphysics, where the contribution from odd elasticity is accounted by using weak forms. Both the
odd plate theory and COMSOL simulation will be employed to investigate the propagation of flexural waves and reveal novel wave
5

phenomena in the subsequent analyses.
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Fig. 2. Comparison of the iso-frequency contours of the active lattice plate with those of the effective odd plates. (a) Iso-frequency contours in terms of real
parts of the eigenfrequencies with the nonzero odd parameters 𝑃𝑥𝑥 = 𝑃𝑦𝑦 = 1.96 and (b) the imaginary parts of eigenfrequencies for the specific real parts of the
eigenfrequencies being 0.012 and 0.024. (c) Iso-frequency contours in terms of real parts of the eigenfrequencies with the nonzero odd parameters 𝑃𝑥𝑦 = 1.96 and
(d) the imaginary parts of eigenfrequencies for the specific real parts of the eigenfrequencies being 0.012 and 0.024. In these plots, the dotted lines represent
the iso-frequency contours of the active lattice plates, which are obtained from COMSOL simulations, while the solid lines represent the iso-frequency contours
of the effective odd plates calculated by using the homogenization theory. In (b) and (d), the radial coordinates denote the magnitudes of the imaginary parts
of eigenfrequencies.

3. Flexural wave propagation in odd plates

The constitutive relation of an odd plate has been obtained from continuum point of view. In this section, the dynamic behavior
such as flexural wave propagation is under consideration. Similarly, the harmonic flexural wave with complex wave vector in the
odd plate is assumed as

𝑤 = 𝑊 𝑒−𝐤𝐼 ⋅𝐫𝑒𝑖(𝐤𝑟⋅𝐫−𝜔𝑡), 𝜓𝑥 = 𝛹𝑥𝑒
−𝐤𝐼 ⋅𝐫𝑒𝑖(𝐤𝑟⋅𝐫−𝜔𝑡), 𝜓𝑦 = 𝛹𝑦𝑒

−𝐤𝐼 ⋅𝐫𝑒𝑖(𝐤𝑟⋅𝐫−𝜔𝑡), (16)

where 𝐤𝑟 and 𝐤𝐼 denote the real and imaginary parts of the wave vector, respectively, to represent wave amplification or attenuation
with −𝐤𝐼 ⋅ 𝐫 being the amplitude amplification factor. This amplification or attenuation behavior depends on the projection of the
imaginary part of the wave vector on the wave propagation direction.

To identify the odd parameter effects on the wave propagation, the iso-frequency contours in terms of real and imaginary parts
of wave number is displayed in Fig. 3 for the dimensionless frequencies 𝛺 = 0.03, 0.06, 0.09 with only one nonzero odd parameter
while the other three being zero such as case 1: 𝑃𝑥𝑥 = 1.96, 𝑃𝑦𝑦 = 𝑃𝑥𝑦 = 𝑃𝑦𝑥 = 0; case 2: 𝑃𝑦𝑥 = 1.96, 𝑃𝑥𝑥 = 𝑃𝑦𝑦 = 𝑃𝑥𝑦 = 0;
case 3: 𝑃𝑥𝑦 = 1.96, 𝑃𝑥𝑥 = 𝑃𝑦𝑦 = 𝑃𝑦𝑥 = 0; and case 4: 𝑃𝑦𝑦 = 1.96, 𝑃𝑥𝑥 = 𝑃𝑥𝑦 = 𝑃𝑦𝑥 = 0, respectively. The real part in Fig. 3(a–d)
represent isotropic flexural wave propagation, which closely resembles that of a passive 2D plate without control. Therefore, the
variation of odd parameters has minimal influence on the real part of the wave number. The imaginary part of the frequency
contours in Fig. 3(e–h) exhibits directional dependent attenuation and amplification zones at a specific frequency. For each case,
the iso-frequency contour for the imaginary part of the wave number appears in only one direction. For waves propagating along the
direction where the iso-frequency contour collects, they will be attenuated as the propagation distance increases. Conversely, when
waves propagate along the opposite direction, they will be amplified. For example, Fig. 3(e) and (f) demonstrate that positive odd
parameters 𝑃𝑥𝑥 and 𝑃𝑦𝑥 amplify waves along the negative direction of the 𝑥-axis and attenuate waves along the positive direction
of the 𝑥-axis. On the other hand, positive odd parameters 𝑃𝑥𝑦 and 𝑃𝑦𝑦 amplify waves along the negative direction of the 𝑦-axis and
attenuate waves along the positive direction of the 𝑦-axis, as shown in Fig. 3(g) and (h). It is important to note that the amplification
and attenuation directions would exchange when the odd parameters become negative, although this is not presented in the paper.
When comparing the magnitudes of the imaginary parts of wave numbers in Fig. 3(e–h) for the four different odd parameters, we
find that odd parameters 𝑃𝑥𝑥 and 𝑃𝑦𝑦 lead to larger imaginary parts of wave numbers, while the imaginary parts of wave numbers
corresponding to 𝑃𝑥𝑦 and 𝑃𝑦𝑥 are smaller. This implies that the same directional bending–shear coupling results in a larger wave
amplification or attenuation. The numerical simulation results shown in Fig. 3(i–l) further support the amplification-attenuation
6
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Fig. 3. Influence of each odd parameter on directional flexural wave propagation. (a–d) Iso-frequency contours as functions of real part of wave number.
(e–h) Iso-frequency contours as functions of imaginary part of wave number. (i–l) Corresponding simulations for directional flexural wave propagation in the
considered scenarios. Starting from the left side, the figures in the first to fourth columns correspond to: case 1 (𝑃𝑥𝑥 = 1.96, 𝑃𝑦𝑦 = 𝑃𝑥𝑦 = 𝑃𝑦𝑥 = 0); case 2
(𝑃𝑦𝑥 = 1.96, 𝑃𝑥𝑥 = 𝑃𝑦𝑦 = 𝑃𝑥𝑦 = 0); case 3 (𝑃𝑥𝑦 = 1.96, 𝑃𝑥𝑥 = 𝑃𝑦𝑦 = 𝑃𝑦𝑥 = 0); and case 4 (𝑃𝑦𝑦 = 1.96, 𝑃𝑥𝑥 = 𝑃𝑥𝑦 = 𝑃𝑦𝑥 = 0).

Fig. 4. Tunability of the wave amplification direction in the odd plate with bending–shear couplings in the same direction, i.e., 𝑃𝑥𝑥 = 𝑃𝑦𝑦 ≠ 0 but 𝑃𝑥𝑦 = 𝑃𝑦𝑥 = 0.
(a–c) Iso-frequency contours in terms of imaginary parts of wave number. (d–f) Corresponding simulations for directional flexural wave propagation in the
considered scenarios. The red contours represent wave amplification profiles, while the blue contours represent wave attenuation profiles.

directions of flexural waves for the four different cases. In the simulation, damping boundaries are implemented to serve as perfect
matched layers (PMLs) in all simulations of flexural waves propagating in odd plates for 𝛺 = 0.03.

It is of interest here to explore how the odd parameters control the flexural wave amplification directions in odd plates. One
simple approach to accomplish this goal is to adjust the magnitudes of the two odd parameters, 𝑃𝑥𝑥 and 𝑃𝑦𝑦. Fig. 4 plots the iso-
frequency contours for the imaginary parts of the wave numbers in polar coordinate systems for adjusting the ratio of two nonzero
odd parameters. It is clearly demonstrated that the wave amplification direction can be shifted by just adjusting the ratio of the
7
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Fig. 5. Control of the amplification directions for flexural waves by changing the signs of the odd parameters 𝑃𝑥𝑥 and 𝑃𝑦𝑦 with 𝑃𝑥𝑦 = 𝑃𝑦𝑥 = 0. (a–c) The
iso-frequency contours for the imaginary parts of wave number for 𝜃𝑎 = 1.75 𝜋, 0.25 𝜋, and 0.75 𝜋, (d–f) Corresponding simulations for directional amplification
of flexural waves in the considered scenarios.

two odd parameters, 𝑃𝑥𝑥∕𝑃𝑦𝑦. Also, we observe that waves propagating close to the directions with larger odd parameters undergo
stronger amplification.

To further characterize the wave amplification, we introduce 𝜃𝑎 and 𝜃𝑑 , which represent the central angles of the amplification
and the attenuation profiles, respectively. These angles are indicated by the purple and the gray dotted arrow lines in Fig. 4(b), and
the profiles are evenly distributed on both sides of the two lines. Mathematically, the two central angles can be defined as

𝜃𝑎 =
𝜃1 + 𝜃2

2
, 𝜃𝑑 = 𝜃𝑎 − 𝜋, (17)

where 𝜃1 and 𝜃2 represent two critical angles between the angle ranges of wave amplification, at which the imaginary part of the
wave number vanishes, and, generally, we also have the relation 𝜃2 = 𝜃1+𝜋. Here, we assume that 𝜃1 < 𝜃2, indicating that the waves
will always be amplified when propagating within the range of angles from 𝜃1 to 𝜃2. However, when the magnitudes of the two odd
parameters are not equal, it seems there is no symmetry for the iso-frequency contour, see Fig. 4(a) and (c), and the corresponding
central angles should not exist.

From Fig. 4, we find that the wave amplification direction is mainly limited to the lower left corner or the wave attenuation
direction is mainly limited to the upper right corner for the positive odd parameters. However, by changing the signs of the odd
parameters, the wave amplification directions can be easily shifted to other directions, as shown in Fig. 5. For instance, for the
two nonzero odd parameters with the same magnitudes, if 𝑃𝑥𝑥 is negative and 𝑃𝑦𝑦 is positive, 𝜃𝑑 and 𝜃𝑎 vary between [𝜋∕2, 𝜋]
and [3𝜋∕2, 2𝜋], respectively. If 𝑃𝑥𝑥 is positive and 𝑃𝑦𝑦 is negative, they vary between [3𝜋∕2, 2𝜋] and [𝜋∕2, 𝜋]. In the case where
both odd parameters are negative, 𝜃𝑑 and 𝜃𝑎 vary between [𝜋, 3𝜋∕2] and [0, 𝜋∕2], respectively. Note that these conclusions hold not
only for odd plates with bending-shear couplings along the same direction but also for other cases, such as odd plates with cross
bending-shear couplings.

In Figs. 3 and 4, the qualitative tunability of the amplification directions of flexural waves in odd plates has been investigated.
However, it is of fundamental importance to find a thorough approach to quantitatively characterize the control of flexural wave
amplification direction by varying the odd parameters. Here, a regulation method involving the rotation of the original coordinate
system, as shown in Fig. 6, is proposed to evaluate the flexural wave amplification directions. The key idea is to rotate the 𝑥-axis
to coincide with the central angle of wave attenuation (opposite to the central angle of wave amplification). So the 𝑦′-axis should
coincide with the critical angle 𝜃1-direction in view of Eq. (17). According to our previous definition, the wave number should be
real for the flexural waves propagating along the critical angle 𝜃1 in the rotated coordinate system, which can be mathematically
represented by 𝑘𝑥′ = 0 and Im(𝑘𝑦′ ) = 0. Thus, the present problem turns into finding the relations between odd parameters to satisfy
this condition in the rotated coordinate system.

To perform the coordinate system rotation, we need to transform the submatrix of odd parameters while keeping the stiffness
matrix unchanged, as the material properties should remain the same after the rotation. This transformation can be expressed from
Eq. (9) as

𝐓 =
[

𝑃𝑥𝑥 𝑃𝑦𝑥 0
𝑃𝑥𝑦 𝑃𝑦𝑦 0

]

. (18)

Eqs. (4) and (5) can be rewritten in a matrix form as

𝐐 = 𝐆𝜸 + 𝐓𝐁, (19)
8
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Fig. 6. Rotation of the coordinate system and the transformation of the iso-frequency contours for the imaginary part of wave number in the new rotated
coordinate system.

where 𝐐 =
[

𝑄𝑥 𝑄𝑦
]𝑇 , 𝜸 =

[

𝛾𝑥𝑧 𝛾𝑦𝑧
]𝑇 , 𝐁 =

[

𝐵𝑥 𝐵𝑦 𝐵𝑥𝑦
]𝑇 , and 𝐆 is the shear stiffness matrix. When the coordinate system is

rotated by an angle 𝜃 counterclockwise about the 𝑧-axis, the vectors of bending curvature and shear force can be represented in the
new rotated coordinate system as

𝐁′ = 𝐑𝐵𝐁, (20)

and

𝐐′ = 𝐑𝑄𝐐, (21)

where

𝐑𝐵 =
⎛

⎜

⎜

⎝

cos2 𝜃 sin2 𝜃 cos 𝜃 sin 𝜃
sin2 𝜃 cos2 𝜃 −cos 𝜃 sin 𝜃

−2 cos 𝜃 sin 𝜃 2 cos 𝜃 sin 𝜃 cos2 𝜃 − sin2 𝜃

⎞

⎟

⎟

⎠

, (22)

𝐑𝑄 =
(

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

)

. (23)

Based upon Eqs. (20) and (21), Eq. (19) can be rewritten in the new coordinate system as

𝐐′ = 𝐆𝜸′ + 𝐓′𝐁′, (24)

where

𝐓′ = 𝐑𝑄𝐓𝐑−1
𝐵 , (25)

and 𝐐′ =
[

𝑄𝑥′ 𝑄𝑦′
]𝑇 , 𝛾 ′ =

[

𝛾𝑥′𝑧′ 𝛾𝑦′𝑧′
]𝑇 , and 𝐁′ =

[

𝐵𝑥′ 𝐵𝑦′ 𝐵𝑥′𝑦′
]𝑇 represent the corresponding physical quantities in the new

coordinate system. Substituting Eqs. (22) and (23) into Eq. (25) yields

𝐓′ =
[

𝑃𝑥′𝑥′ 𝑃𝑦′𝑥′ 𝑃(𝑥′𝑦′)𝑥′
𝑃𝑥′𝑦′ 𝑃𝑦𝑦′ 𝑃(𝑥′𝑦′)𝑦′

]

, (26)

where the odd parameters in the new coordinate system read

𝑃𝑥′𝑥′ =
(

𝑃𝑥𝑥 cos2 𝜃 + 𝑃𝑦𝑥 sin
2 𝜃

)

cos 𝜃 +
(

𝑃𝑥𝑦 cos2 𝜃 + 𝑃𝑦𝑦 sin
2 𝜃

)

sin 𝜃, (27)

𝑃𝑦′𝑥′ =
(

𝑃𝑥𝑥 sin
2 𝜃 + 𝑃𝑦𝑥 cos2 𝜃

)

cos 𝜃 +
(

𝑃𝑥𝑦 sin
2 𝜃 + 𝑃𝑦𝑦 cos2 𝜃

)

sin 𝜃, (28)

𝑃(𝑥′𝑦′)𝑥′ =
[(

𝑃𝑦𝑥 − 𝑃𝑥𝑥
)

cos 𝜃 +
(

𝑃𝑦𝑦 − 𝑃𝑥𝑦
)

sin 𝜃
]

sin 𝜃 cos 𝜃, (29)

𝑃𝑥′𝑦′ = −
(

𝑃𝑥𝑥 cos2 𝜃 + 𝑃𝑦𝑥 sin
2 𝜃

)

sin 𝜃 +
(

𝑃𝑥𝑦 cos2 𝜃 + 𝑃𝑦𝑦 sin
2 𝜃

)

cos 𝜃, (30)

𝑃𝑦′𝑦′ = −
(

𝑃𝑥𝑥 sin
2 𝜃 + 𝑃𝑦𝑥 cos2 𝜃

)

sin 𝜃 +
(

𝑃𝑦𝑦 cos 2𝜃 + 𝑃𝑥𝑦 sin
2 𝜃

)

cos 𝜃, (31)

𝑃(𝑥′𝑦′)𝑦′ =
[(

𝑃𝑥𝑥 − 𝑃𝑦𝑥
)

sin 𝜃 −
(

𝑃𝑥𝑦 − 𝑃𝑦𝑦
)

cos 𝜃
]

sin 𝜃 cos 𝜃. (32)

Thus, in the new coordinate system, the constitutive relation of the odd plate can be transformed into

⎛

⎜

⎜

⎜

⎜

⎜

𝑀𝑥′

𝑀𝑦′

𝑀𝑥′𝑦′

𝑄𝑥′

⎞

⎟

⎟

⎟

⎟

⎟

=

⎛

⎜

⎜

⎜

⎜

⎜

𝐷11 𝐷12 0 0 0
𝐷12 𝐷11 0 0 0
0 0 𝐷33 0 0

𝑃𝑥′𝑥′ 𝑃𝑦′𝑥′ 𝑃(𝑥′𝑦′)𝑥′ 𝐺 0

⎞

⎟

⎟

⎟

⎟

⎟

⎛

⎜

⎜

⎜

⎜

⎜

𝐵𝑥′
𝐵𝑦′
𝐵𝑥′𝑦′
𝐵𝑥′𝑧′

⎞

⎟

⎟

⎟

⎟

⎟

, (33)
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⎝
𝑄𝑦′ ⎠ ⎝

𝑃𝑥′𝑦′ 𝑃𝑦′𝑦′ 𝑃(𝑥′𝑦′)𝑦′ 0 𝐺
⎠ ⎝
𝐵𝑦′𝑧′ ⎠
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Fig. 7. Accurate control of the wave amplification directions for flexural waves in odd plates. (a–c) The iso-frequency contours for the imaginary parts of wave
number. (d–f) Corresponding simulations for directional amplification of flexural waves in the considered scenarios.

where the odd parameters 𝑃(𝑥′𝑦′)𝑥′ and 𝑃(𝑥′𝑦′)𝑦′ represent the twist–shear couplings.
Based on the new constitutive relation of the odd plate, the dispersion relation for the flexural waves in the rotated coordinate

system can be obtained. It can be easily found that the dispersion equation will be changed from the complex equation to the real
equation for 𝑘𝑥′ = 0 when the following conditions are satisfied

𝑃𝑥′𝑦′ = 𝑃𝑦′𝑦′ = 𝑃(𝑥′𝑦′)𝑥′ = 0. (34)

If there exist solutions of Eq. (34), the central angle of the wave attenuation or the wave amplification should exist, which equal
to the rotation angle 𝜃 and 𝜃 + 𝜋, respectively. For example, if the nonzero odd parameters of the odd plate are 𝑃𝑥𝑥 = 𝑃𝑦𝑦 = 1.96
in the original 𝑥𝑦𝑧 coordinate system, the rotation angle 𝜃 = 𝜃𝑑 = 𝜋∕4 satisfies Eq. (34). In the new coordinate system, the other
three odd parameters are calculated as 𝑃𝑥′𝑥′ = 𝑃𝑦′𝑥′ = 𝑃(𝑥′𝑦′)𝑦′ = 𝑃𝑥𝑥∕

√

2 for this case, where 𝑃(𝑥′𝑦′)𝑦′ is the dimensionless form of
𝑃(𝑥′𝑦)𝑦′ . The transformed iso-frequency contour in the new coordinate system exhibits the exact same shape as the iso-frequency
contour in the original coordinate system, see Fig. 6. Thus, it is necessary to find a general solution to Eq. (34) to rotate the wave
amplification-attenuation profile without changing the shape. In view of Eqs. (29)–(31), one solution to Eq. (34) can be achieved
as

𝑃𝑥𝑥 = 𝑃𝑦𝑥, 𝑃𝑦𝑦 = 𝑃𝑥𝑦, 𝑃𝑦𝑦 = 𝑃𝑥𝑥 tan 𝜃. (35)

Therefore, the accurate control over the flexural wave amplification direction is possible by using Eq. (35). Three examples
demonstrating this control are shown in Fig. 7(a–c), where the central angle of wave attenuation 𝜃𝑑 is tuned from −𝜋∕12 to 𝜋∕3
based on Eq. (35). By changing the signs of the odd parameters, the wave amplification direction can be shifted between different
coordinate system quadrants, as shown in Fig. 5. This means that flexural waves propagating in odd plates can be theoretically
controlled to amplify or attenuate in any desired direction with high accuracy.

In Fig. 8, simulation results for the active lattice plates of odd elasticity are presented to further demonstrate the effectiveness
of the regulation method described by Eq. (35). It is clearly demonstrated that the proposed method is capable to control the
amplification directions of flexural waves in the active lattice plates with real microstructures. In the simulation, the transfer
functions should be properly designed as 𝐻𝑥𝑥 = 𝐻𝑦𝑥, 𝐻𝑦𝑦 = 𝐻𝑥𝑦, and 𝐻𝑦𝑦 = 𝐻𝑥𝑥 tan 𝜃𝑑 , where 𝜃𝑑 represents the central angle of
wave attenuation in the lattice as −𝜋/12, 𝜋/6, 𝜋/3, 3𝜋/4, −3𝜋/4, and −𝜋/4 in Fig. 8(a–g), respectively. The transfer function 𝐻𝑥𝑥
is selected to be 6 in Fig. 8(a–c) and (f) and −6 in Fig. 8(d) and (e). The lattice plate consists of 8 × 8 unit cells whose material and
geometric parameters are listed in Tables 1 and 2, respectively, and PMLs are implemented at the boundaries to reduce reflections.

To validate the effectiveness of the plate theory in modeling wave propagation in the active lattice, we present simulations
of waves propagating in the effective odd plates, as depicted in Fig. 9. For quantitative comparisons, the contour plots display
displacement field magnitudes using the same scale employed in Fig. 8, which illustrates wave propagation in the active lattices.
The remarkable consistency between Figs. 8 and 9 is apparent, confirming the applicability of the effective plate theory for the
study of wave propagation within the active lattices. Furthermore, in order to further examine the validation of the effective theory,
Fig. C.1 provides quantitative comparisons of wave amplitudes along the dotted circles in both the effective plates and the active
10

lattices, as presented in Appendix C.
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Fig. 8. Control of the amplification-attenuation directions for flexural waves propagating in the active lattice plate of odd elasticity. (a–f) Numerically obtained
flexural wave field distributions with 𝜃𝑑 selected as (a) −𝜋/12, (b) 𝜋/6, (c) 𝜋/3, (d) 3𝜋/4, (e) −3𝜋/4, and (f) −𝜋/4. The black arrows represent the central angle
of wave amplification, while the yellow arrows represent the central angle of wave attenuation. The excitation source is placed at the center of the lattice plate,
and the excitation frequency is set to 1000 Hz. The lattice plate consists of 8 × 8 unit cells, and PMLs are implemented at the boundaries to reduce reflection.
The dashed circles are used to measure azimuthal wave amplitudes at the radius of 0.15 m for quantitative comparisons illustrated in Fig. C.1 in Appendix C.

Fig. 9. Wave fields in effective odd plates corresponding to the cases illustrated in Fig. 8.

4. Stoneley-like interfacial waves between two odd plates

In this section, we will explore the underlying physical mechanisms that Stoneley-like interfacial waves can exist between two
adjacent odd plates, characterize propagation properties of these waves, and also illustrate their intriguing properties in terms
of confinement, and reconfigurability. The interface is constructed at the location 𝑥 = 0, where the two odd plates meet, as
schematically shown in Fig. 10. We introduce a new form of interfacial waves that can be sustained at a planar interface-impedance
discontinuity characterized by the two odd parameters with opposite signs as

− 𝑃 𝑙 = 𝑃 𝑟 = 𝑃 , −𝑃 𝑙 = 𝑃 𝑟 = 𝑃 , (36)
11
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Fig. 10. Conceptual diagram illustrating flexural waves propagating along the interface between odd plates. The two odd plates have the same material properties
but differ only in their odd parameters.

where the superscripts ‘‘𝑙’’ and ‘‘𝑟’’ indicate the regions lying on the left (𝑥 < 0) and right (𝑥 > 0) sides of the interface. The
displacement fields for flexural waves can be expressed as

𝑤𝑙 = 𝑊 𝑙𝑒𝑖𝑘
𝑙
𝑥𝑥𝑒𝑖

(

𝑘𝑦𝑦−𝜔𝑡
)

, 𝜓 𝑙𝑥 = 𝛹 𝑙𝑥𝑒
𝑖𝑘𝑙𝑥𝑥𝑒𝑖

(

𝑘𝑦𝑦−𝜔𝑡
)

, 𝜓 𝑙𝑦 = 𝛹 𝑙𝑦𝑒
𝑖𝑘𝑙𝑥𝑥𝑒𝑖

(

𝑘𝑦𝑦−𝜔𝑡
)

(37)

in the region 𝑥 < 0, and

𝑤𝑟 = 𝑊 𝑟𝑒𝑖𝑘
𝑟
𝑥𝑥𝑒𝑖

(

𝑘𝑦𝑦−𝜔𝑡
)

, 𝜓𝑟𝑥 = 𝛹 𝑟𝑥𝑒
𝑖𝑘𝑟𝑥𝑥𝑒𝑖

(

𝑘𝑦𝑦−𝜔𝑡
)

, 𝜓𝑟𝑦 = 𝛹 𝑟𝑦𝑒
𝑖𝑘𝑟𝑥𝑥𝑒𝑖

(

𝑘𝑦𝑦−𝜔𝑡
)

(38)

in the region 𝑥 > 0. Similar to the conventional Stoneley waves, the interfacial waves should exist if we could identify the interfacial
waves that propagate along the interface with constant amplitudes and exponentially decay away from the interface. Mathematically,
the wave numbers must satisfy conditions

Re
(

𝑘𝑦
)

≠ 0, Im
(

𝑘𝑦
)

= 0 (39)

Im
(

𝑘𝑥
)

< 0, 𝑥 < 0 (40)

Im
(

𝑘𝑥
)

> 0, 𝑥 > 0 (41)

Without loss of generality, we assume

𝑘𝑙𝑥 = −𝑖𝑑𝑙 , 𝑘𝑟𝑥 = 𝑖𝑑𝑟, (42)

where both of 𝑑𝑙 and 𝑑𝑟 are assumed to be real and positive. It is important to emphasize that the conditions 𝑃 𝑙𝑥𝑦 = 𝑃 𝑟𝑥𝑦 = 0 and
𝑃 𝑙𝑦𝑦 = 𝑃 𝑟𝑦𝑦 = 0 are crucial for satisfying the condition described by Eq. (39). By substituting the two expressions from Eq. (42)
into Eq. (15) separately, we can derive two dispersion equations, each corresponding to one of the odd plates. Remarkably, both
equations feature real coefficients. Additionally, in view of Eq. (36), we find that the two dispersion equations for the odd plates
become identical when we set

𝑑𝑙 = 𝑑𝑟 = 𝑑 (𝑑 > 0). (43)

Thus, the displacement fields on both sides of the interface can be specified as, for 𝑥 > 0,

𝑤𝑟 = ℎ
(

𝐴1𝑒
−𝑑1𝑥 + 𝐴2𝑒

−𝑑2𝑥 + 𝐴3𝑒
−𝑑3𝑥

)

𝑒𝑖
(

𝑘𝑦𝑦−𝜔𝑡
)

,

𝜓𝑟𝑥 =
(

𝛽1𝑥𝐴1𝑒
−𝑑1𝑥 + 𝛽2𝑥𝐴2𝑒

−𝑑2𝑥 + 𝛽3𝑥𝐴3𝑒
−𝑑3𝑥

)

𝑒𝑖
(

𝑘𝑦𝑦−𝜔𝑡
)

,

𝜓𝑟𝑦 =
(

𝛽1𝑦𝐴1𝑒
−𝑑1𝑥 + 𝛽2𝑦𝐴2𝑒

−𝑑2𝑥 + 𝛽3𝑦𝐴3𝑒
−𝑑3𝑥

)

𝑒𝑖
(

𝑘𝑦𝑦−𝜔𝑡
)

,

(44)

and for 𝑥 < 0,

𝑤𝑙 = ℎ
(

𝐴4𝑒
𝑑1𝑥 + 𝐴5𝑒

𝑑2𝑥 + 𝐴6𝑒
𝑑3𝑥

)

𝑒𝑖
(

𝑘𝑦𝑦−𝜔𝑡
)

,

𝜓 𝑙𝑥 = −
(

𝛽1𝑥𝐴4𝑒
𝑑1𝑥 + 𝛽2𝑥𝐴5𝑒

𝑑2𝑥 + 𝛽3𝑥𝐴6𝑒
𝑑3𝑥

)

𝑒𝑖
(

𝑘𝑦𝑦−𝜔𝑡
)

,

𝜓 𝑙𝑦 =
(

𝛽1𝑦𝐴4𝑒
𝑑1𝑥 + 𝛽2𝑦𝐴5𝑒

𝑑2𝑥 + 𝛽3𝑦𝐴6𝑒
𝑑3𝑥

)

𝑒𝑖
(

𝑘𝑦𝑦−𝜔𝑡
)

,

(45)

where 𝑑1, 𝑑2 and 𝑑3 must be real and positive roots of the dispersion equations, 𝛽𝑖𝑥 = �̄�𝑥∕�̄� and 𝛽𝑖𝑦 = �̄�𝑦∕�̄� can be obtained for
each 𝑑𝑖(𝑖 = 1, 2, 3) by employing Eq. (15) along with Eqs. (36), (42), and (43), and 𝐴𝑖(𝑖 = 1− 6) are the constants. The displacement
field must satisfy the interfacial conditions to ensure its continuity across the interface, which can be represented by

𝑤𝑟 = 𝑤𝑙 , 𝜓𝑟𝑥 = 𝜓 𝑙𝑥, 𝜓
𝑟
𝑦 = 𝜓 𝑙𝑦,

𝑙 𝑟 𝑙 𝑟 𝑙 𝑟 (46)
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Fig. 11. Simulations of interfacial flexural waves propagating along the interface in the 𝑦-direction and their corresponding comparisons with theory for (a)
𝑃𝑦𝑥 = 1.96, 𝛺 = 0.031, (b) 𝑃𝑦𝑥 = 3.92, 𝛺 = 0.031, and (c) 𝑃𝑦𝑥 = 3.92, 𝛺 = 0.062. The normalized amplitudes are measured at the dashed lines. The inset in (c)
showcases the field distributions of interfacial waves in the corresponding active lattice plate.

In view of Eqs. (9), (44) and (45), the interfacial conditions given by Eq. (46) can be further simplified into

𝐴1 = 𝐴4, 𝐴2 = 𝐴5, 𝐴3 = 𝐴6, (47)

𝜓𝑟𝑥 = 0,𝑀𝑟
𝑥𝑦 = 0, 𝑄𝑟𝑥 = 0. (48)

Thus, we only need to consider the waves on the right side of the interface with the boundary conditions given by Eq. (48), which
can be specified in a matrix form as

⎡

⎢

⎢

⎣

𝛽1𝑥 𝛽2𝑥 𝛽3𝑥
𝐵51 𝐵52 𝐵53
𝐵61 𝐵62 𝐵63

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐴1
𝐴2
𝐴3

⎤

⎥

⎥

⎦

= 0, (49)

where
𝐵51 = 𝑑1𝛽

1
𝑦 − 𝑖𝑘𝑦𝛽

1
𝑥 , 𝐵52 = 𝑑2𝛽

2
𝑦 − 𝑖𝑘𝑦𝛽

2
𝑥 ,

𝐵53 = 𝑑3𝛽
3
𝑦 − 𝑖𝑘𝑦𝛽

3
𝑥 ,

𝐵61 =
(

𝑑1 − 𝛽1𝑥
)

+ 𝑃𝑥𝑥𝑑1𝛽1𝑥 − 𝑃𝑦𝑥𝑖𝑘𝑦𝛽
1
𝑦 ,

𝐵62 =
(

𝑑2 − 𝛽2𝑥
)

+ 𝑃𝑥𝑥𝑑2𝛽2𝑥 − 𝑃𝑦𝑥𝑖𝑘𝑦𝛽
2
𝑦 ,

𝐵63 =
(

𝑑3 − 𝛽3𝑥
)

+ 𝑃𝑥𝑥𝑑3𝛽3𝑥 − 𝑃𝑦𝑥𝑖𝑘𝑦𝛽
3
𝑦 .

To obtain non-trivial solutions to Eq. (49), the determinant of the coefficient matrix must be zero, namely
|

|

|

|

|

|

|

𝛽1𝑥 𝛽2𝑥 𝛽3𝑥
𝐵51 𝐵52 𝐵53
𝐵61 𝐵62 𝐵63

|

|

|

|

|

|

|

= 0. (50)

If interfacial waves exist on the interface between two odd plates, both the dispersion equation [Eq. (15)] and the interfacial
conditions must be satisfied, subject to the following constraints: the real value of 𝑘𝑦 and the real and positive values of 𝑑1, 𝑑2,
nd 𝑑3.

For the interface along the 𝑦-axis, satisfying the condition represented by Eq. (39) requires both odd parameters 𝑃𝑥𝑦 and 𝑃𝑦𝑦 to
e zero. Thus, we only need to consider the remaining two cases: 𝑃𝑥𝑥 ≠ 0, 𝑃𝑦𝑥 = 0 and 𝑃𝑥𝑥 = 0, 𝑃𝑦𝑥 ≠ 0. However, in the first case
𝑃𝑥𝑥 ≠ 0, 𝑃𝑦𝑥 = 0

)

, the interface should be weak since the difference between the shear forces induced by odd elasticity on the two
ides of the interface is small. This occurs because the bending deformation along the 𝑥-axis is minimal for waves propagating along
he 𝑦-axis interface. On the other hand, in the second case

(

𝑃𝑥𝑥 = 0, 𝑃𝑦𝑥 ≠ 0
)

, the bending deformation remains unchanged for an
nterfacial wave propagating along the 𝑦-axis interface, resulting in distinct interfacial waves as observed in Fig. 11(a–c). Thus, the
ross coupling between bending and shear in different directions is crucial for the formation of interfacial waves in odd plates.

To confirm that the interfacial flexural waves depicted in Fig. 11(a–c) exhibit Stoneley-like behavior, we compare the amplitudes
btained from the numerical simulation with those from the analytical solutions presented in Eqs. (44) and (45). The comparison
13
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Fig. 12. Rotation of the interface in an odd plate by varying the odd parameters. (a–f) Numerically obtained flexural wave field distributions with the normal
direction of the interface being selected as (a) 30◦, (b) 45◦, (c) 60◦, (d) 90◦, (e) 135◦, and (f) 150◦. The dimensionless excitation frequency is 0.062. The inserted
figure in (a) shows the comparison of the displacement field distributions along the dotted line obtained from the simulation and the corresponding analytical
solution.

reveals good agreement between the two results in the regions near the interface and away from the excitation source. Discrepancies
between the two curves can be attributed to the interference of bulk waves in the simulation results. Bulk waves diminish
significantly in regions distant from the point excitation source due to scattering effects. In contrast, interfacial waves propagate
with constant amplitudes. This particular attribute presents a noteworthy benefit of the interfacial waves by facilitating concentrated
wave energy along the interface. It is worth noting that increasing the frequency and magnitude of the odd parameter enhances
the energy concentration on the interface. This is evident from the comparison between Fig. 11(a) and (b) for the different odd
parameters, as well as the comparison between Fig. 11(b) and (c) for the different excitation frequencies. Unlike the interfacial
waves in topological structures (Chen et al., 2018) and chiral structures (Carta et al., 2020), the interfacial waves between odd
plates have no limitations on working frequency. It should be noted that the odd parameter on the right side of the interface must
be positive to satisfy the condition of having real and positive values for 𝑑1, 𝑑2, and 𝑑3. Consequently, the odd parameter on the
left side of the interface should be negative. The interfacial waves also exist in the odd plate through the appropriate arrangement
of the transfer functions, see the inserted figure in Fig. 11 for example.

In order to enhance design flexibility and wave reconfigurability, a proposition is made to create an interface in any desired
direction. The key aspect involves determining the odd parameters on both sides of the interface. To accomplish this, the technique
of coordinate system rotation is utilized by aligning the 𝑦-axis with the interface. As a result, the relationship between the four
parameters can be established using Eq. (35). In Fig. 12, it is demonstrated that the interface between odd plates can be continuously
rotated by simply adjusting the odd parameters. The odd parameters

(

𝑃𝑥𝑥 and 𝑃𝑦𝑦
)

on the right-hand side of the interface in Fig. 12
are chosen as: (a) (1.96, 1.13), (𝑏)(1.96, 1.96), (c) (1.57, 2.72), (d) (0, 1.96), (e)(−1.96, 1.96), (f) (−1.96, 1.13). It should be noted that the
odd parameters must also satisfy 𝑃𝑦𝑥 = 𝑃𝑥𝑥 and 𝑃𝑥𝑦 = 𝑃𝑦𝑦.

Considering the ability of the Stonley-like interfacial waves to effectively trap energy at the interface, the assembly of odd
plates holds promise for designing exceptional waveguides. Taking advantage of this, we demonstrate the design of multichannel
waveguides with distinct shapes by assembling different units of triangular odd plates using the method described earlier. In Fig. 13,
we present the examples of different shaped waveguides. It should be noted that the variations among the triangular odd plate units
lie solely in the odd parameters, with each unit satisfying 𝑃𝑦𝑥 = 𝑃𝑥𝑥 = 𝑁𝑥 and 𝑃𝑥𝑦 = 𝑃𝑦𝑦 = 𝑁𝑦. The different odd plate units,
identified as (1–8) in Fig. 13, correspond to distinct odd parameters

(

𝑁𝑥, 𝑁𝑦
)

. Theoretically, waveguides of any desired shape can
be realized as long as the plate is sufficiently large, given the capability of forming interfaces between odd plates along arbitrary
directions.

It is necessary to note that the interfacial wave studied in this section is a distinct wave solution, primarily satisfying the
interfacial continuity condition between two odd plates. It behaves akin to conventional Rayleigh waves on a single half-space or
Stoneley waves occurring between two neighboring half-spaces in a conventional medium. While the wave propagation phenomenon
shows similarities to that of the topological interfacial wave, the underlying mechanism for realizing the interfacial wave in the odd
plate is fundamentally distinct from that of the topological interfacial wave, which is typically caused by breaking time or space
symmetry (Chen et al., 2018, 2019). As a result, the topological interfacial wave is confined to the bandgap frequency range, whereas
the interfacial wave phenomena in the odd plate are not bound by this limitation and can take place across a broader frequency
14
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Fig. 13. Multi-channel waveguides assembled by triangular odd plates. (a–c) Numerically obtained flexural wave field distributions with ‘‘X’’-, ‘‘+’’-
and ‘‘Y’’-shaped waveguides. The indexed triangular odd plates have different odd parameters

(

𝑁𝑥 , 𝑁𝑦
)

, which are (1)(𝑃 , 0), (2)(0, 𝑃 ), (3)(−𝑃 , 0), (4)
(0,−𝑃 ), (5)(𝑃 , 𝑃 ), (6)(−𝑃 , 𝑃 ), (7)(𝑃 ,−𝑃 ), and (8)(−𝑃 ,−𝑃 ), where 𝑃 = 1.96. The interfacial waves are excited by a point source of a dimensionless frequency
of 0.062 at the center.

spectrum. However, the interfacial wave in the odd plate lacks the robust property of preventing the backscattering of topological
waves at lattice interfaces and boundaries, a characteristic typically quantified by topological numbers such as Chern number.

5. Conclusion

This paper primarily focuses on the microstructure design of odd plates, along with a comprehensive theoretical investigation
into its wave dynamics. Initially, an active lattice plate is proposed, which incorporates a piezoelectric-patch-based sensor–actuator
feed-forward system to establish a nonreciprocal coupling between bending deformation and shear forces. It is demonstrated that the
active lattice plate can be homogenized as an effective odd plate, which has four odd parameters that can be adjusted independently.
The performance of the proposed odd plate theory is validated against the active exact model through the comparison of the iso-
frequency contour prediction. Under the framework of the odd plate, we demonstrate that the flexural wave amplification directions
could be controllable via the tune of the odd parameters. A thorough approach for precise wave control is further analytically
derived by using the rotation of the coordinate system, which can also serve as a valuable guide for the control of flexural waves
in active lattice plate of odd elasticity. In addition, we theoretically uncover the existence of the Stoneley-like interfacial waves
between odd plates with the odd parameters of opposite signs. We illustrate numerically the propagation properties of these waves
and the underlying physical mechanisms and also quantitatively investigate their intriguing properties in terms of confinement and
reconfigurability. Finally, we address possible practical implementations based on odd pates. Our results hold intriguing potentials
for applications in extreme waveguiding and reconfigurable wave steering in the plate, potentially paving the way for further
research on 2D non-Hermitian systems in elasticity.
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Fig. A.1. Schematic of the digital control system. In this diagram, ‘‘T’’ and ‘‘B’’ correspond to the electronic devices associated with the sensors located on
the top and bottom, respectively. Similarly, ‘‘X’’ and ‘‘Y’’ represent the electronic devices connected to the actuators along the 𝑥-axis and 𝑦-axis, respectively.
Additionally, the superscripts ‘‘+’’ and ‘‘−’’ indicate the actuators affixed to the positive and negative directions of either the 𝑥-axis or the 𝑦-axis.

Fig. B.1. Static shear deformations induced by the active beams: (a) Unit cell with a single active beam in the 𝑦-direction, (b) Unit cell with an active beam in
the 𝑥-direction and another active beam in the 𝑦-direction. The arrow lines indicate the directions of shear forces generated by the active beams on the frame.

Appendix A. Schematic of digital control system

The schematic diagram of the digital control system is depicted in Fig. A.1. This system comprises two charge amplifiers, two
frequency-dependent lowpass filters, and four voltage amplifiers. These components are employed to extract electric charges from
the surfaces of piezoelectric sensing patches located both on the top and bottom of the beams. The charge amplifiers extract
these charges, while the frequency-dependent lowpass filters play a crucial role in filtering out noise signals originating from the
surrounding environment. Subsequently, the sensing voltages, denoted as 𝑉𝑇 and 𝑉𝐵 , undergo amplification through the voltage
amplifiers. By utilizing voltage adders and transfer functions, the resulting output voltages (±𝑉𝑎𝑥 and ±𝑉𝑎𝑦) are differentially applied
to two sets of actuators situated along the 𝑥-axis and 𝑦-axis, respectively. For the current design, the relationship between the sensor
voltages and the actuator voltages can be expressed as 𝑉𝑎𝑥 = (𝐻𝑥𝑥 − 𝛽𝐻𝑦𝑥)𝑉𝑇 + (𝛽𝐻𝑥𝑥 −𝐻𝑦𝑥)𝑉𝐵 and 𝑉𝑎𝑦 = (𝐻𝑥𝑦 − 𝛽𝐻𝑦𝑦)𝑉𝑇 + (𝛽𝐻𝑥𝑦 −
𝐻 )𝑉 . These equations are derived from Eqs. (2) and (3).
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Fig. C.1. Quantitative comparisons of wave amplitudes along dotted circles in actual lattices and effective plates, with a propagation radius of 0.15 m.

Appendix B. The shear deformations induced by the active beams

Fig. B.1 illustrates the static shear deformations of the unit cell within the active lattice. These deformations result from the
activation of the beams, achieved by applying antisymmetric voltages to a pair of actuators.

Appendix C. Comparisons of the wave amplitudes

Fig. C.1 presents quantitative comparisons of wave amplitudes for waves propagating within the actual lattices and the effective
plates. The data points are extracted from Figs. 8 and 9, respectively, along the dotted circles. The radii of all the circles are consistent
at 0.15 m. Within this context, 𝐴0 represents the amplitude at angles of 0.25𝜋 or 1.25𝜋, where the waves remain unaffected by
amplification or attenuation.
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