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A B S T R A C T

Research on non-reciprocal propagation of waves is of great significance in the field of
photonic and phononic crystals for realizing flexible one-way propagation devices with potential
engineering applications. Here, non-reciprocal Rayleigh waves are investigated in a continuous
two-dimensional (2D) semi-infinite medium bound with an array of space–time modulated
spring–mass oscillators. The involved modulation is a wave-like perturbation of the surface of
the continuous medium that breaks time-reversal symmetry and reciprocity. To characterize
the propagation of Rayleigh waves in such a complex 2D medium with continuous and
discrete interface, an analytical study is performed to obtain dispersion-engineered bandgaps by
adopting the asymptotic method and coupled mode theory, which is also validated by numerical
simulation. Specifically, the non-reciprocal transmission of Rayleigh waves with one-way mode
conversion is illustrated, and various relevant physical quantities, including conversion length
and band gap size, are quantitatively estimated. This work sheds light on versatile control of
Rayleigh wave propagation ranging from sensing and evaluation of engineering structures to
guided wave-based damage detection techniques.

. Introduction

Rayleigh waves, discovered in 1885 by Lord Rayleigh, are a type of Surface Acoustic Waves (SAWs) that propagate over relatively
ong distances at the free surfaces of solids with amplitudes exponentially decaying perpendicular to the surfaces. Research on
ffectively controlling and manipulating Rayleigh waves has been gathering great attention from both scientific and engineering
ommunities for decades. Several well-studied strategies have been proposed across multiple research fields involving designs of
istributions of simple artificial micro- and macro-structures such as pillars, grooves, resonators, etc, on the surface of the host
edium (Ash et al., 2017; Benchabane et al., 2017; Boechler et al., 2013; Khelif et al., 2010; Wu et al., 2004; Colquitt et al., 2017; Zhu

t al., 2015; Badreddine Assouar and Oudich, 2011; Wu et al., 2008; Li et al., 2018). Advantages of doing so are twofold. First, the
xistence of these external inclusions does not require any modification on the geometrical or material properties of the continuum,
eeping the host media intact. Second, tunable features can be easily realized in experimental implementations. As an outstanding
xample, the use of phononic crystals and mechanical metamaterials provides extra degree of freedom in tailoring the propagating
ehaviors of Rayleigh waves, such as scattering performance, polarization control and so on. Further, existing developments in novel
AW devices enable a wide range of applications in sensing (Liu et al., 2016; Devkota et al., 2017; Polewczyk et al., 2017; Kadota
t al., 2011; Aubert et al., 2010; Delsing et al., 2019), rf filters (Ruppel, 2017), duplexers (Kadota et al., 2005) and seismic wave
itigation (Colquitt et al., 2017; Colombi et al., 2016; Artru et al., 2004).
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Nomenclature

𝝋 Mode shape of Rayleigh wave in the semi-infinite medium
𝑭 , 𝐺, 𝐻 , 𝐼 Modulation induced effective body forces
⋅∗ Complex conjugate
⋅𝑗 , ⋅𝑗 𝑗th-order harmonic terms. In this work, 𝑗 = −1, 0, or 1
𝛿⋅ First-order correction terms
⟨⋅⟩ Averaging operator ⟨⋅⟩ ≡ 1∕2𝜋 ∫ 2𝜋

0
𝜇, 𝜆 Lamé constants
𝛺 Resonance frequency of the unperturbed oscillator 𝛺 =

√

𝐾∕𝑚
𝜕𝑖 Partial differential operator with respect to 𝑖
𝛷, 𝛹 Unperturbed scalar and vector potential functions
𝜌 Mass density of the semi-infinite host medium
⋅̃ Perturbed terms
𝑈 , 𝑊 Magnitudes of the perturbed 𝑥- and 𝑧-directional displacements in the semi-infinite medium
𝜉 Phase term of the modulation 𝜉 = 𝑞𝑚𝑥 − 𝜔𝑚𝑡
𝑐𝑇 , 𝑐𝐿, 𝑐𝑅 Phase velocities for transverse, longitudinal, and Rayleigh waves
𝐷1, 𝐷2 Magnitudes of the unperturbed scalar and vector potential functions
𝐾𝑚, 𝐾, 𝛿𝐾 Modulated spring constant, unmodulated spring constant, and modulation strength of the spring constant
𝑚, 𝐴, 𝑙𝑠 Mass, occupied area, and spacing of each individual spring–mass oscillator
𝑄 Normalized wavenumber 𝑄 = 2 × 105 m−1

𝑞𝑚, 𝜔𝑚, 𝑣𝑚, 𝜆𝑚 Modulation wavenumber, angular frequency, speed, and wavelength
𝑟𝑗 , 𝑝𝑗 , 𝑠𝑗 Dimensionless terms of 𝑗th-order harmonic. 𝑟𝑗 = 2−𝜔2

𝑗∕𝑐
2
𝑇 𝑞

2
𝑗 , 𝑝𝑗 =

√

1 − 𝜔2
𝑗∕𝑐

2
𝐿𝑞

2
𝑗 , and 𝑠𝑗 =

√

1 − 𝜔2
𝑗∕𝑐

2
𝑇 𝑞

2
𝑗

𝑢, 𝑤, 𝑍 Unperturbed 𝑥-directional, 𝑧-directional displacements in the semi-infinite medium, and unperturbed
mass displacement of the oscillator

𝑉0, 𝑉1 Amplitudes for fundamental and first-order harmonics chosen by linearity

Despite decades of research on the manipulation of Rayleigh waves, most studies are by far focused on reciprocal systems with
ime-reversal symmetry, where scattering does not necessarily rely on propagation sense. To break time-reversal symmetry, a novel
lass of materials, called dynamic or spatio-temporal materials (Lurie, 1997), in the fields of acoustics and elasticity have been
astly investigated in both discrete and continuous systems. This type of materials features properties which not only change in
pace but also in time in a wave-like fashion referred to as a ‘‘pump wave’’. Recent studies have theoretically and numerically
nveiled unprecedented wave-transmission behavior in dynamic materials (Nassar et al., 2017a,b,c; Wallen and Haberman, 2019;
i et al., 2017; Nassar et al., 2020). Examples of applications include the realization of directional mode converters (Yu and Fan,
009; Zanjani et al., 2014), selective acoustic circulators (Fleury et al., 2014), directional wave reflectors (Trainiti and Ruzzene,
016; Swinteck et al., 2015) and directional wave accelerators (Nassar et al., 2017c). However, to the best of our knowledge, little
o no theoretical work has been conducted on realizing non-reciprocal propagation of Rayleigh waves with space–time modulations.

In this paper, we perform an extensive study of Rayleigh wave propagation in a 2D semi-infinite medium bound by an array
f space–time modulated spring–mass oscillators. Note that as suggested by Casadei et al. (2012) and Chen et al. (2014, 2019),
odulating the stiffness of oscillators is technologically feasible using programmable piezoelectric components. To characterize the
ropagation of Rayleigh waves in the medium involving both continuous and discrete interfaces, we develop the analytical model
y using asymptotic method and coupled mode theory to obtain modified dispersion relations of the Rayleigh wave due to the
ave-like modulation. Theoretical findings for non-reciprocal wave transmission are validated by transient numerical simulations.
pecifically, one-way wave mode conversion is quantitatively characterized. Various relevant physical quantities, such as gap widths
nd interaction lengths, are estimated so as to guide future experimental implementations. This study can lead to further advance
f Rayleigh wave-based devices to enable asymmetric propagation of energy, topological insulators and one-way waveguiding.

. Theoretical modeling

.1. Rayleigh wave dispersion in space–time modulated media

We start with a brief review of Rayleigh wave solution in a 2D isotropic semi-infinite medium. In that context, the governing
avier’s equations are expressed as

[(2𝜇 + 𝜆) 𝜕2𝑥 + 𝜇𝜕2𝑧 ]𝑢 + (𝜇 + 𝜆) 𝜕𝑥𝜕𝑧𝑤 = 𝜌𝜕2𝑡 𝑢 (1)

(𝜇 + 𝜆) 𝜕𝑥𝜕𝑧𝑢 + [(2𝜇 + 𝜆) 𝜕2𝑧 + 𝜇𝜕2𝑥]𝑤 = 𝜌𝜕2𝑡 𝑤 (2)
2
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Fig. 1. Schematic of non-reciprocal propagation of Rayleigh waves at the space–time modulated surface of a semi-infinite medium. An array of oscillators,
including masses 𝑚 and modulated spring constants 𝐾𝑚(𝑥, 𝑡) = 𝐾 + 𝛿𝐾 cos (𝑞𝑚𝑥 − 𝜔𝑚𝑡) with 𝐾 being unperturbed spring constant, are attached to the surface of
the medium. Each of the oscillators is separated with one another by a spacing 𝑙𝑠. The oscillators only vibrate along the 𝑧-direction. The isotropic continuous
medium is described by a set of elastic parameters (𝜇, 𝜆 and 𝜌). The Rayleigh waves propagate at the surface in a non-reciprocal way that the transmission or
reflection depends on directions of incidence at specific frequencies.

where 𝜇 and 𝜆 denote Lamé constants of the medium and 𝑢 and 𝑤 represent the displacement fields along the 𝑥− and 𝑧−directions,
respectively. Operator 𝜕𝑖 with 𝑖 denoting 𝑥, 𝑧 or 𝑡 is a partial derivative operator with respect to 𝑖, and will be used throughout the
paper. By introducing the potentials 𝑢 = 𝜕𝑥𝛷 + 𝜕𝑧𝛹 and 𝑤 = 𝜕𝑧𝛷 − 𝜕𝑥𝛹 , the Navier’s Eqs. (1) and (2) are reformulated as

∇2𝛷 − 1
𝑐2𝐿

𝜕2𝑡 𝛷 = 0 (3)

∇2𝛹 − 1
𝑐2𝑇

𝜕2𝑡 𝛹 = 0 (4)

where 𝑐𝐿 =
√

𝜆 + 2𝜇∕𝜌 and 𝑐𝑇 =
√

𝜇∕𝜌 are the phase velocities for longitudinal (L) and transverse (T) waves. By solving Eqs. (3)
and (4) and applying stress conditions at the free boundary: 𝜎𝑧𝑧 = 𝜎𝑥𝑧 = 0, the non-dispersive Rayleigh wave solution at the free
surface can be obtained as

𝛷 = 𝐷1 (𝑧) exp
[

𝑖
(

𝑞0𝑥 − 𝜔0𝑡
)]

(5)

𝛹 = 𝐷2 (𝑧) exp
[

𝑖
(

𝑞0𝑥 − 𝜔0𝑡
)]

(6)

where 𝑞0 is the wave-number along 𝑥-axis and 𝜔0 is angular frequency.
In the study that follows, instead of the above free surface, we will consider Rayleigh wave propagation at a space–time

modulated surface by introducing an array of linear oscillators connected at the surface to the semi-infinite medium, as shown
in Fig. 1. Each linear oscillator is composed of a mass 𝑚 and spring constant 𝐾 and the spacing between oscillators is set to be 𝑙𝑠.
Now a wave-like modulation on the spring constant is assumed as 𝐾𝑚 = 𝐾 + 𝛿𝐾 cos (𝑞𝑚𝑥 − 𝜔𝑚𝑡) = 𝐾 + 𝛿𝐾 (𝜉), with 𝛿𝐾, 𝑞𝑚 and 𝜔𝑚
being the modulation amplitude, modulation wavenumber and modulation frequency, respectively. The modulation wavelength can
be subsequently defined as 𝜆𝑚 = 2𝜋∕𝑞𝑚. The modulation amplitude 𝛿𝐾 is assumed to be small compared with 𝐾 but great enough
to break reciprocity.

The perturbative approach based on the amplitude of the modulation then is utilized to investigate how an incident Rayleigh
wave is transformed by the modulation (Nassar et al., 2017a,b,c). In the presence of perturbation, the governing equations (1) and
(2) are modified accordingly as

[(2𝜇 + 𝜆) 𝜕2𝑥 + 𝜇𝜕2𝑧 ]�̃� + (𝜇 + 𝜆) 𝜕𝑥𝜕𝑧�̃� = 𝜌𝜕2𝑡 �̃� (7)

(𝜇 + 𝜆) 𝜕𝑥𝜕𝑧�̃� + [(2𝜇 + 𝜆) 𝜕2𝑧 + 𝜇𝜕2𝑥]�̃� = 𝜌𝜕2𝑡 �̃� (8)

where �̃� = 𝑢0 + 𝛿𝑢 +⋯ and �̃� = 𝑤0 + 𝛿𝑤 +⋯. The perturbed potential functions can be written as

�̃� = �̃�1 (𝜉, 𝑧) 𝑒𝑖(𝑞𝑥−�̃�𝑡) (9)

�̃� = �̃�2 (𝜉, 𝑧) 𝑒𝑖(𝑞𝑥−�̃�𝑡) (10)

in which 𝑞 = 𝑞0 + 𝛿𝑞 +⋯, �̃� = 𝜔0 + 𝛿𝜔 +⋯, and �̃�𝑖 = 𝐷𝑖 + 𝛿𝐷𝑖 +⋯, and 𝛿𝑞, 𝛿𝜔 and 𝛿𝐷𝑖 are the first-order correction terms to 𝑞0,
𝜔 and 𝐷 , respectively. According to the Bloch theorem, the two potential functions are 2𝜋-periodic functions of 𝜉. Therefore, we
3
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can decompose the leading-order amplitude of the potential function into 𝐷1 (𝜉, 𝑧) =
∑

𝑗∈Z 𝐷𝑗
1(𝑧)𝑒

𝑖𝑗𝜉 , where 𝑗 denotes the Fourier
rder and Z denotes the collection of integer numbers. By keeping the terms of leading-order correction and considering only the
th-order harmonic component, substituting Eq. (9) into the perturbed equations (3) and (4) leads to

𝜕2𝑧𝐷
𝑗
1 (𝑧) +

(

𝜔2
𝑗∕𝑐

2
𝐿 − 𝑞2𝑗

)

𝐷𝑗
1 (𝑧) = 0 (11)

𝜕2𝑧𝐷
𝑗
2 (𝑧) +

(

𝜔2
𝑗∕𝑐

2
𝑇 − 𝑞2𝑗

)

𝐷𝑗
2 (𝑧) = 0 (12)

here 𝜔𝑗 = 𝜔0 + 𝑗𝜔𝑚 and 𝑞𝑗 = 𝑞0 + 𝑗𝑞𝑚. On the other hand, the equation of motion of surface oscillators can be written as

𝑚𝜕2𝑡 𝑍
𝑗 +𝐾𝑚

(

𝑍𝑗 −𝑤𝑗
𝑧=0

)

= 0 (13)

here 𝑍𝑗 is the 𝑗th-order harmonic component of the mass displacement up to the leading-order correction. We assume a traveling
ave solution reading 𝑍 =

∑

𝑗∈Z 𝑍𝑗
0𝑒

𝑖𝑗𝜉𝑒𝑖(𝑞𝑥−�̃�𝑡) for the oscillator mass motion and keep only the leading-order terms. Following the
upplementary material of Boechler et al. (2013) and the process detailed in Appendix A, we obtain the characteristic equation of
eading-order correction which describes the Rayleigh wave dispersion in the presence of space–time modulated oscillators.

(

𝑚𝜔2
𝑗

𝐾
− 1

)

⎡

⎢

⎢

⎣

(

2 −
𝜔2
𝑗

𝑞2𝑗 𝑐
2
𝑇

)2

− 4

√

√

√

√1 −
𝜔2
𝑗

𝑞2𝑗 𝑐
2
𝑇

√

√

√

√1 −
𝜔2
𝑗

𝑞2𝑗 𝑐
2
𝐿

⎤

⎥

⎥

⎦

= 𝑚
𝐴𝜌

𝜔4
𝑗

𝑞3𝑗 𝑐
4
𝑇

√

√

√

√1 −
𝜔2
𝑗

𝑞2𝑗 𝑐
2
𝐿

(14)

his equation is exactly the one obtained in Boechler et al. (2013), but with higher-order terms. For the Rayleigh wave propagating
long −𝑥 direction, the dispersion relation can be easily obtained by conducting similar derivation theretofore. Moreover, we can
efine an eigenmode 𝝋𝑗 (𝜔𝑗 , 𝑞𝑗 ) which describes the mode shape of Rayleigh waves in the presence of the spring–mass oscillators by
atching the stress conditions as

𝝋𝑗 (𝜔𝑗 , 𝑞𝑗 ) =
[

𝑢𝑗

𝑤𝑗

]

=

⎡

⎢

⎢

⎢

⎣

𝑖𝑞𝑗 (𝑒
−𝑞𝑗𝑝𝑗𝑧 − 2 𝑠𝑗𝑝𝑗

𝑟𝑗
𝑒−𝑞𝑗 𝑠𝑗𝑧)

−𝑞𝑗𝑝𝑗 (𝑒
−𝑞𝑗𝑝𝑗𝑧 − 2

𝑟𝑗
𝑒−𝑞𝑗 𝑠𝑗𝑧)

⎤

⎥

⎥

⎥

⎦

(15)

where 𝑟𝑗 = 2 −𝜔2
𝑗∕𝑐

2
𝑇 𝑞

2
𝑗 , 𝑝𝑗 =

√

1 − 𝜔2
𝑗∕𝑐

2
𝐿𝑞

2
𝑗 , and 𝑠𝑗 =

√

1 − 𝜔2
𝑗∕𝑐

2
𝑇 𝑞

2
𝑗 . The displacement of the oscillator mass 𝑍𝑗

0 accordingly reads

𝑍𝑗
0 =

𝛺2𝑞𝑗𝑝𝑗
𝜔2
𝑗 −𝛺2

(

1 − 2
𝑟𝑗

)

(16)

where 𝛺 =
√

𝐾∕𝑚 represents the resonant frequency of the unperturbed oscillators. The dispersion diagram is calculated in Fig. 2
rom Eq. (14) for 𝑗 equal to 0 and ±1. In general, when the pump wave has its first 𝑁 Fourier components non-zero, 𝑗 can take
nteger values between −𝑁 and 𝑁 . The hatched area represents the bulk modes which mainly survive in the bulk region of the
emi-infinite medium and hence are of less interest in this work. For the fundamental harmonic 𝝋0(𝜔0, 𝑞0) in absence of modulation,

a large band gap generated by the local resonance of oscillators can be witnessed. The lower branch goes towards the resonance
frequency 𝛺 as 𝑞 increases, while the upper branch approaches gradually the non-dispersive Rayleigh dispersion curve (𝜔 = 𝑐𝑅𝑞)
which is not shown here. With modulation turned on, the first-order harmonics 𝝋−1(𝜔−1, 𝑞−1) and 𝝋1(𝜔1, 𝑞1) appear with linear shifts
of dispersion curves, with respect to the fundamental mode 𝝋0. In Fig. 2, points of no-intersection correspond to uncoupled cases
in which only mode 𝝋0 exists, leading to the eigenmode

𝝋(𝜉) = 𝑉0𝝋0 (17)

where 𝑉0 is the linear amplitude of 𝝋0. This means physically that the incident mode 𝝋0 will not get scattered while propagating in
the space–time modulated area. On the other hand, points of intersections 𝝋0 ∩ 𝝋±1 correspond to coupled cases where more than
one eigenmodes exist. Accordingly, the eigenmode reads

𝝋(𝜉) = 𝑉0𝝋0 + 𝑉±1𝝋±1𝑒±𝑖𝜉 (18)

which is the sum of a pair of coupled modes with the amplitudes 𝑉0 and 𝑉±1 respectively.
Fig. 2 graphically illustrates three pairs of coupled modes denoted as A, B and C. Taking pair A as an example, if one leg, say

𝝋0∩𝝋1, is incident from left, the other leg, 𝝋0∩𝝋−1, is scattered and also propagates along the −𝑥-direction. On the other hand, 𝝋0∩𝝋1

will not be scattered when incident from right. This indicates the non-reciprocal propagation of Rayleigh waves at our space–time
modulated surface. In general, when the Rayleigh wave excited at any of the coupled modes from certain direction is scattered,
it will not be scattered from the opposite direction. This is a direct consequence of the existence of space–time modulation which
breaks the time-reversal symmetry. With the current parameters, following Mace and Manconi (2012), pairs A and B correspond to
veering pairs where the two interacting branches veer without the formation of directional bandgap (scattering and incidence in
the same direction, and the group velocities of the two branches hold the identical sign), whereas pair C is a locking pair because
4

the two interacting branches now lock around a directional bandgap (scattering and incidence in the opposite directions, and the
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Fig. 2. Coupling and non-reciprocity: A breaking of time-reversal symmetry produces three pairs of coupled modes (A), (B) and (C). Pairs (A) and (B) manifest
as veering pairs, while pair (C) is the locking one. The pattern-hatched area represents the region of bulk modes, enclosed by a shear-wave cone (blue dashed).
The constitutive parameters used here are set as 𝜌 = 2.2 g/cm3, 𝜆 = 12.354 GPa, 𝜇 = 28.826 GPa, 𝐾 = 2400 N∕m, 𝑚 = 1.315 × 10−15 kg, and 𝐴 = 1.0101 × 10−12

m2. 𝜔 is normalized to the resonance frequency of oscillators 𝛺 =
√

𝐾∕𝑚 while 𝑞 is normalized to 𝑄 = 2 × 105 m−1. The modulation parameters throughout the
paper are selected as 𝜔𝑚 = 𝛺∕4 and 𝑞𝑚 = 1.35𝑄.

group velocities of the interacting branches hold the opposite signs). It is worth noting that the non-reciprocity here only occurs
in a narrow band of frequencies for given surface parameters. That being said, excitation far away from these non-reciprocal pairs
on the dispersion curve will only yield fundamental harmonic wave whose frequency and wavenumber remain on the fundamental
dispersion curve. To achieve broadband non-reciprocity, one may consider the possible approach of utilizing active circuit control
to modify the modulation parameters of the surface oscillators in real-time (Chen et al., 2019). Careful observation reveals that the
dispersion curves for 𝝋−1 and 𝝋1 are truncated, as shown in Fig. 2, because Eq. (14) can only capture the propagating details of
Rayleigh waves. To further determine the coupling between coupled modes at the points of intersections, the perturbation method
for displacement fields of the modulated system will be conducted (Nassar et al., 2017a,c).

1.2. Orthogonality condition of modulated Rayleigh wave propagation

To further determine coupling of coupled modes at the intersection points of the perturbed system involving both the continuous
and discrete parts, we assume a set of perturbed plane waves along 𝑥-direction in terms of displacement fields as

�̃� (𝑥, 𝑧, 𝜉) = 𝑈 (𝜉, 𝑧)𝑒𝑖(𝑞𝑥𝑥−�̃�𝑡)

�̃� (𝑥, 𝑧, 𝜉) = 𝑊 (𝜉, 𝑧)𝑒𝑖(𝑞𝑥𝑥−�̃�𝑡)

𝑍 (𝑥, 𝑧, 𝜉) = 𝑍(𝜉)𝑒𝑖(𝑞𝑥𝑥−�̃�𝑡)
(19)

where 𝑈 = 𝑢 + 𝛿𝑢, 𝑊 = 𝑤 + 𝛿𝑤, 𝑞𝑥 = 𝑞0 + 𝛿𝑞, 𝑍 = 𝑍0 + 𝛿𝑍 and �̃� = 𝜔0 + 𝛿𝜔, up to first-order corrections. Substituting Eq. (19) into
the governing equations (7), (8) and the perturbed equation (13) and keeping only the first-order correction terms yields a new set
of governing equations for the forced wave propagation.

⎡

⎢

⎢

⎣

(2𝜇 + 𝜆)
(

𝑖𝑞0 + 𝑞𝑚𝜕𝜉
)2 + 𝜇𝜕2𝑧 (𝜇 + 𝜆)

(

𝑖𝑞0 + 𝑞𝑚𝜕𝜉
)

𝜕𝑧
(𝜇 + 𝜆)

(

𝑖𝑞0 + 𝑞𝑚𝜕𝜉
)

𝜕𝑧 (2𝜇 + 𝜆) 𝜕2𝑧 + 𝜇
(

𝑖𝑞0 + 𝑞𝑚𝜕𝜉
)2

⎤

⎥

⎥

⎦

𝛿𝝋

+𝑭 = 𝜌(𝑖𝜔0 + 𝜔𝑚𝜕𝜉 )
2𝛿𝝋

(20)

−𝐾
(

𝛿𝑍 − 𝛿𝑤𝑧=0
)

+ 𝐺 = 𝑚
(

𝑖𝜔0 + 𝜔𝑚𝜕𝜉
)2 𝛿𝑍 (21)

where 𝛿𝝋 = (𝛿𝑢, 𝛿𝑤)𝑇 . The above equations describe the first-order correction terms, i.e. 𝛿𝑢, 𝛿𝑤 and 𝛿𝑍, propagating at the
space–time modulated surface. The corresponding stress boundary conditions of first-order corrections at 𝑧 =0 now become

[

𝜇
(

𝑖𝑞0 + 𝑞𝑚𝜕𝜉
)

𝛿𝑤 + 𝜇𝜕𝑧𝛿𝑢
]

𝑧=0 = 𝐻 (22)
[

𝜆
(

𝑖𝑞0 + 𝑞𝑚𝜕𝜉
)

𝛿𝑢 + (2𝜇 + 𝜆) 𝜕𝑧𝛿𝑤
]

𝑧=0 = −𝐾
𝐴

(

𝛿𝑍 − 𝛿𝑤𝑧=0
)

+ 𝐼 (23)

Here, we obtain a set of modulation-induced effective body forces of the first-order correction, reading

𝑭 =
[

𝛼
]

(24)
5

𝛽
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𝐺 = −𝛿𝐾𝑚(𝜉)
(

𝑍 −𝑤0
)

+ 𝑚
(

2𝜔0𝛿𝜔 − 2𝑖𝛿𝜔𝜔𝑚𝜕𝜉
)

𝑍 (25)

𝐻 = −𝑖𝜇𝛿𝑞𝑤𝑧=0 (26)

𝐼 = −
𝛿𝐾(𝜉)
𝐴

(

𝑍 −𝑤𝑧=0
)

− 𝑖𝜆𝛿𝑞𝑢𝑧=0 (27)

where

𝛼 = [(2𝜇 + 𝜆)
(

−2𝑞0𝛿𝑞 + 2𝑖𝑞𝑚𝛿𝑞𝜕𝜉
)

+𝜌
(

2𝜔0𝛿𝜔 − 2𝑖𝛿𝜔𝜔𝑚𝜕𝜉
)

]𝑢 + 𝑖 (𝜇 + 𝜆) 𝛿𝑞𝜕𝑧𝑤

𝛽 = [𝜇
(

−2𝑞0𝛿𝑞 + 2𝑖𝑞𝑚𝛿𝑞𝜕𝜉
)

+𝜌
(

2𝜔0𝛿𝜔 − 2𝑖𝛿𝜔𝜔𝑚𝜕𝜉
)

]𝑤 + 𝑖 (𝜇 + 𝜆) 𝛿𝑞𝜕𝑧𝑢.

Expressions (24)–(27) are functions of 𝛿𝑞, 𝛿𝜔 and 𝛿𝐾. Among them, expression (24) corresponds to the effective body force applied
on the continuum, while expression (25) represents the effective body force applied on the discrete spring–mass oscillator section.

In deriving the orthogonality condition, the effective body force in the continuum is coupled with the one in the discrete section
through the stress boundary conditions of first-order corrections. The orthogonality condition requires all the effective body forces
to do zero virtual work for all the possible eigenmodes (Nassar et al., 2017a,b,c). By following the detailed derivation in Appendix B,
we reach eventually the orthogonality condition relating the continuous and discrete sections:

𝑤∗
𝑧=0

(

𝑄0
𝐴

⟨𝐺⟩ − ⟨𝐼⟩
)

− 𝑢∗𝑧=0 ⟨𝐻⟩ + ∫

∞

0
𝝋∗ ⋅ ⟨𝑭 ⟩ 𝑑𝑧 = 0 (28)

where 𝑄𝑗 = 1 −𝑚𝜔2
𝑗∕(𝑚𝜔

2
𝑗 −𝐾), 𝑗 ∈ Z. Eq. (28) indicates the virtual work done by the effective body forces 𝐺, 𝐼 , 𝐻 and 𝑭 is zero.

In other words, the body forces have to be perpendicular to the eigenvector in a way to avoid increasing and unbounded oscillating
amplitudes in the system (Nassar et al., 2017a,b,c). Based on the derived orthogonality condition of our spring–mass-decorated
system, we can further examine the couplings between the coupled modes.

1.3. Uncoupled mode

We first consider the case of a lonely uncoupled mode. Without loss of generality, the considered harmonic here is chosen to
be the fundamental mode 𝝋0 (𝑞0, 𝜔0

)

. Combining Eqs. (15), (16), (17) and (24)–(27) and taking average on the resulting equations
asically yields a set of averaged effective body forces for 𝝋0

⟨𝑭 ⟩

0 =
⎡

⎢

⎢

⎣

𝑉0
[

−2𝑞0𝛿𝑞 (2𝜇 + 𝜆) + 2𝜌𝜔0𝛿𝜔
]

𝑢0 + 𝑖 (𝜇 + 𝜆) 𝛿𝑞𝜕𝑧𝑉0𝑤0

𝑉0
[

−2𝜇𝑞0𝛿𝑞 + 2𝜌𝜔0𝛿𝜔
]

𝑤0 + 𝑖 (𝜇 + 𝜆) 𝛿𝑞𝜕𝑧𝑉0𝑢0

⎤

⎥

⎥

⎦

⟨𝐺⟩

0 = 2𝑚𝜔0𝛿𝜔𝑉0𝑍
0

⟨𝐻⟩

0 = −𝑖𝜇𝛿𝑞𝑉0𝑤0
𝑧=0

⟨𝐼⟩0 = −𝑖𝜆𝛿𝑞𝑉0𝑢0𝑧=0

(29)

Here, the amplitude 𝑉0 can be chosen arbitrarily by linearity. Substituting Eqs. (29) into Eq. (28) results in

I0 + 𝑖𝜇𝛿𝑞𝑤0
𝑧=0𝑢

0∗
𝑧=0 +𝑤0∗

𝑧=0

( 2
𝐴
𝑚𝜔0𝛿𝜔𝑄0𝑍

0 + 𝑖𝜆𝛿𝑞𝑢0𝑧=0
)

= 0 (30)

here the integration reads I𝑗 = 1
𝑉𝑗

∫ ∞
0 𝝋𝑗∗ ⋅⟨𝑭 ⟩

𝑗 𝑑𝑧, 𝑗 ∈ Z. Using the mode shapes in Eqs. (15) and (16) into Eq. (30) and performing
rearrangements yields the group velocity of Rayleigh waves for uncoupled modes in presence of modulated spring–mass oscillators.

𝑣0𝑔 = 𝛿𝜔
𝛿𝑞

= −
𝑎0
𝑏0

(31)

where 𝑎𝑗 and 𝑏𝑗 , 𝑗 ∈ Z are functions of 𝜔𝑗 , 𝑞𝑗 , 𝐾 and 𝑚, and are detailed in Appendix C. Alternatively, the expression of the group
velocity can also be derived from a variation of the dispersion relation in Eq. (14).

1.4. Coupled mode

Then, we investigate the coupling between two harmonics at mode 𝝋0 ∩𝝋1, which corresponds to the simplest case. We will first
discuss the veering pairs (pairs A and B in Fig. 2), since the coupled modes involved have the wavenumbers of identical sign. In
this way, the mode shape in the continuous medium takes the form (18) while that in the discrete section is changed accordingly
as

𝑍𝑗 =
𝛺2𝑞𝑗𝑝𝑗
2 2

(

1 − 2
𝑟

)

, 𝑗 = ±1 (32)
6
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Substituting the mode shape (18) into the effective body forces (24)–(27) results in a new set of effective body forces for the coupled
modes.

𝑭 =
[

𝛼
𝛽

]

𝐺 = − 𝛿𝐾(𝜉)(𝑉0𝑍0 + 𝑉1𝑍
1𝑒𝑖𝜉 − 𝑉0𝑤

0
𝑧=0 − 𝑉1𝑤

1
𝑧=0𝑒

𝑖𝜉 )

+ 2𝑚𝜔0𝛿𝜔𝑉0𝑍
0 + 2𝑚𝜔1𝛿𝜔𝑉1𝑍

1𝑒𝑖𝜉

𝐻 = − 𝑖𝜇𝛿𝑞(𝑉0𝑤0
𝑧=0 + 𝑉1𝑤

1
𝑧=0𝑒

𝑖𝜉 )

𝐼 =
𝛿𝐾(𝜉)
𝐴

(𝑉0𝑍0 + 𝑉1𝑍
1𝑒𝑖𝜉 − 𝑉0𝑤

0
𝑧=0 − 𝑉1𝑤

1
𝑧=0𝑒

𝑖𝜉 )

− 𝑖𝜆𝛿𝑞(𝑉0𝑢0𝑧=0 + 𝑉1𝑢
1
𝑧=0𝑒

𝑖𝜉 )

(33)

here

𝛼 = 𝑉0[−2𝑞0𝛿𝑞 (2𝜇 + 𝜆) + 2𝜌𝜔0𝛿𝜔]𝑢0 + 𝑉1[−2𝑞1𝛿𝑞 (2𝜇 + 𝜆)

+2𝜌𝜔1𝛿𝜔]𝑢1𝑒𝑖𝜉 + 𝑖 (𝜇 + 𝜆) 𝛿𝑞𝜕𝑧(𝑉0𝑤0 + 𝑉1𝑤
1𝑒𝑖𝜉 )

𝛽 = 𝑉0[−2𝜇𝑞0𝛿𝑞 + 2𝜌𝜔0𝛿𝜔]𝑤0 + 𝑉1[−2𝜇𝑞1𝛿𝑞

+2𝜌𝜔1𝛿𝜔]𝑤1𝑒𝑖𝜉 + 𝑖 (𝜇 + 𝜆) 𝛿𝑞𝜕𝑧(𝑉0𝑢0 + 𝑉1𝑢
1𝑒𝑖𝜉 )

epeating the procedures used in the uncoupled scenario for both the fundamental and first-order harmonics yields
[

E11 E12
E21 E22

] [

𝑉0
𝑉1

]

= E

[

𝑉0
𝑉1

]

= 0 (34)

here
E11 = 𝑎0𝛿𝑞 + 𝑏0𝛿𝜔

E12 = 𝑞0𝑝0
𝛿𝐾
𝐴

(1 − 2
𝑟0
)
(

𝑍1 + 𝑞1𝑝1(1 −
2
𝑟1
)
)

(

𝑄0 + 1
)

E21 = 𝑞1𝑝1
𝛿𝐾
𝐴

(1 − 2
𝑟1
)
(

𝑍0+𝑞0𝑝0(1 −
2
𝑟0
)
)

(

𝑄1 + 1
)

E22 = 𝑎1𝛿𝑞 + 𝑏1𝛿𝜔

(35)

and
⟨

𝛿𝐾𝑒𝑖𝜉
⟩

=
⟨

𝛿𝐾𝑒−𝑖𝜉
⟩

= 𝛿𝐾 (also see Appendix D for detailed derivation). Solving the eigenvalue problem |E| = 𝟎 leads to
first-order corrections to the dispersion curve around the coupled modes 𝝋0 ∩ 𝝋1.

𝛿𝜔 =
−(𝑎1𝑏0 + 𝑎0𝑏1)

2𝑏0𝑏1
𝛿𝑞 ± 1

2𝑏0𝑏1

√

(

𝑎1𝑏0 − 𝑎0𝑏1
)2 (𝛿𝑞)2 + 4𝑏0𝑏1E12E21 (36)

By picking 𝛿𝐾 = 0 (unmodulated scenario), E12 and E21 in Eq. (35) vanish, and the above expression (36) gives the Rayleigh wave
group velocities 𝑣0𝑔 and 𝑣1𝑔 for the uncoupled modes 𝝋0 and 𝝋1, respectively. For the non-reciprocal locking pair (pair C in Fig. 2), the
two legs are in opposite propagating directions, and hence perform opposite elliptical particle motion directions for the displacement
fields. In this way, the expressions of mode shapes of the locking pair need to be accordingly corrected as

𝝋0 =
[

𝑢0

𝑤0

]

=

⎡

⎢

⎢

⎢

⎣

𝑖𝑞0(𝑒𝑞0𝑝0𝑧 − 2 𝑠0𝑝0
𝑟0

𝑒𝑞0𝑠0𝑧)

𝑞0𝑝0(𝑒𝑞0𝑝0𝑧 −
2
𝑟0
𝑒𝑞0𝑠0𝑧)

⎤

⎥

⎥

⎥

⎦

𝝋1 =
[

𝑢1

𝑤1

]

=

⎡

⎢

⎢

⎢

⎣

𝑖𝑞1(𝑒−𝑞1𝑝1𝑧 − 2 𝑠1𝑝1
𝑟0

𝑒−𝑞1𝑠1𝑧)

−𝑞1𝑝1(𝑒−𝑞1𝑝1𝑧 −
2
𝑟1
𝑒−𝑞1𝑠1𝑧)

⎤

⎥

⎥

⎥

⎦

𝑍𝑗 =
𝛺2𝑞𝑗𝑝𝑗
𝜔2
𝑗 −𝛺2

(

1 − 2
𝑟𝑗

)

(37)

Substituting expressions (37) into Eqs. (62)–(65) in Appendix D and simply repeating the same procedures of deriving the veering
couplings leads to first-order corrections to the dispersion curve of the locking pair. To graphically illustrate the couplings, we plot
the first-order corrections to the three pairs and the dispersion curve of the space–time modulated system in Fig. 3, with the same
parameters used in plotting Fig. 2 and a non-zero modulation strength 𝛿𝐾 = 0.1𝐾. Fig. 3(a–c) illustrate how the first corrections
to the dispersion curve unveil the couplings at these three pairs. Taking the veering pair B shown in Fig. 3(b) as an example,
when the lower-frequency point of intersection for mode (0.668 Ω, 1.469𝑄) is incident, it will be converted into the other mode
(

0.668 Ω + 𝜔𝑚, 1.469𝑄 + 𝑞𝑚
)

at higher frequency within an interaction or conversion length which will be discussed later. Generally
speaking, the excitation of one of the coupled legs in the space–time modulated medium leads to the creation of the other leg. The
conversion, taking place at certain frequencies in certain directions, will not occur in the opposite propagation direction at the same
7

frequency, which shows non-reciprocity due to the loss of time-reversal symmetry. On the other hand, the interacting branches
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Fig. 3. First-order corrections to the dispersion curve and the corrected dispersion relations up to the first-order correction: A non-zero modulation 𝛿𝐾 = 0.1𝐾
enables the couplings between different harmonics. The first-order corrections to the pairs A, B and C in Fig. 2 are illustrated in (a), (b) and (c), respectively.
The two shaded areas in (c) represent the two band gaps generated by the modulation. The corrected dispersion curve of the Rayleigh wave propagation in the
space–time modulated semi-infinite medium is shown in (d), up to the first-order correction.

of the pairs A and B veer since both coupled modes have the wavenumbers of same signs. There is no band gap formed in the
vicinity of them such that the incident waves in principle will not be reflected within the modulation area. Specifically, the upper
branch refers to the optical branch where 𝑍(𝑡) and 𝑤𝑧=0(𝑡) oscillate out-of-phase, while the lower branch is called acoustic branch
where 𝑍(𝑡) and 𝑤𝑧=0(𝑡) exhibit in-phase vibration. Pair B exhibits the one-way mode conversion between the acoustic mode and
the optical one. By contrast, the two interacting branches of the locking pair C shown in Fig. 2(c) lock and involves two band gaps
about the coupled modes. It indicates that any incidence close to one of the coupled modes will be totally reflected into the other
one within certain interaction lengths. Following Eq. (36), the veering zone width of frequency 2𝛿𝜔 at the critical point (𝛿𝑞 = 0)
reads 2𝛿𝜔(𝛿𝑞 = 0) = 2

√

𝑏0𝑏1E12E21∕(𝑏0𝑏1). We take the two veering pairs in Fig. 3(a) and (b) as an example. The oscillator spacing
𝑙𝑠 is solely dependent of the area occupied by the individual oscillator, since we fixed the thickness of the semi-infinite medium.
We first plot the intersection frequency and wavenumber of the fundamental and first-order harmonics in function of 𝑙𝑠 to show
that tuning 𝑙𝑠 shifts the spectral location of the intersection of the two veering branches [see Fig. 4(a) and (c)]. As 𝑙𝑠 increases,
the intersection frequency increases as well as the magnitude of the intersection wavenumber. The veering zone widths 2𝛿𝜔 at a
certain 𝑙𝑠 for both pairs are also plotted in Fig. 4(b) and (d) in functions of 𝑙𝑠 and the modulation strength 𝛿𝐾. As can be seen, at
any 𝑙𝑠, 2𝛿𝜔 increases monotonically with the increasing 𝛿𝐾. This can be easily concluded from the fact that E12 and E21 are both
proportional to 𝛿𝐾 [see Eq. (35)], which in turn leads 2𝛿𝜔 to be proportional to 𝛿𝐾 as well. On the other side, 2𝛿𝜔 is insensitive
to the variation of 𝑙𝑠 for both veering pairs, at least within the range considered. It is worth mentioning that since our proposed
system here is weakly and slowly modulated, i.e. 𝛿𝐾 ≪ 𝐾 and |𝜔𝑚∕𝑞𝑚| < 𝑐𝑅, the locking pair is always stable, featuring horizontal
directional bandgaps. In strongly modulated systems (|𝜔𝑚∕𝑞𝑚| > 𝑐𝑅), it is likely for the system to be unstable to allow the existence
of vertical bandgap where the frequency is purely imaginary. Cassedy and Oliner (1963) and Cassedy (1967). Our recent work
has already demonstrated the transition from stable to unstable bandgaps when the modulation speed or amplitude in the active
system increases (Nassar et al., 2017c). Recent experimental results also proved that the presence of intrinsic losses can quench the
instability, making the strongly modulated systems stable (Wang et al., 2018). Lastly, we recover the dispersion curve of Rayleigh
waves in the modulated medium in Fig. 3(d). The dashed curves correspond to the uncoupled dispersion curves of fundamental and
first-order harmonics. The blue solid curve represents the fixed dispersion diagram up to the first-order correction. In this work, we
only consider the first-order correction because it already yields the satisfactory prediction of dispersion curves of coupled modes.
Higher-order correction terms may enhance the wave mode coupling shown in Fig. 3 to some degrees. However, their importance
can almost be neglected compared with the first-order terms because of the weak modulation considered.
8
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Fig. 4. Parametric study on the influence oscillator spacing ls and modulation strength 𝛿𝐾 on the intersection frequency and wave number of the fundamental
and the first-order harmonics and the veering zone width 2𝛿𝜔. (a) and (b) correspond to the veering pair A, while (c) and (d) correspond to the veering pair
B. The red arrows in (a) and (c) indicate the increasing direction of 𝑙𝑠.

1.5. Transmission-type conversion

The Rayleigh wave propagating in the space–time modulated medium is converted from one harmonic to one another in the
vicinity of the coupled pairs. To characterize their mode conversion properties, we need to discuss separately the veering pairs and
locking one. This is simply because the former pairs hold the same signs in group velocity while the latter one is opposite. For the
veering pairs, we start by defining the group velocities for the uncoupled harmonics as

𝑣0𝑔 = −
𝑎0
𝑏0

, 𝑣1𝑔 = −
𝑎1
𝑏1

(38)

Substituting expression (38) into Eq. (36) and utilizing the derivation process detailed in Nassar et al. (2017b) and Appendix E, we

can conclude that at the propagation length 𝑑 = 𝜋∕
(

2𝛿𝑞𝑎
)

within the modulated area, where 𝛿𝑞𝑎 =

√

[

𝛿𝜔
2

(

1
𝑣0𝑔

− 1
𝑣1𝑔

)]2
+ E12E21

𝑏0𝑏1𝑣0𝑔𝑣1𝑔
,

𝝋0 reaches its minimum while 𝝋1 reaches the maximum. Typically, the total conversion from 𝝋0 to 𝝋1 can be expected when 𝐶𝑏 = 0,
namely, 𝛿𝜔 = 0. In this case, we have

𝛿𝑞± = ±

√

E12E21

𝑏0𝑏1𝑣0𝑔𝑣1𝑔
, 𝐶± = ±

𝑏0𝑣0𝑔
E12

√

E12E21

𝑏0𝑏1𝑣0𝑔𝑣1𝑔
(39)

For the eigenmode 𝝋0 (0.668 Ω, 1.469𝑄) corresponding to the veering pair B propagating along the +𝑥-direction, we have the
normalized conversion length 𝑄𝑑 = 9.56 and the inverted amplification factor 1

|𝐶|

= 0.9726. To quantitatively illustrate the
dependence of 𝑄𝑑 and 1

|𝐶|

on (𝜔1, 𝑞1) and the potential tunability of the one-way frequency conversion, we plot in Fig. 5 based
on expressions (39) by tuning 𝑞𝑚 and 𝜔𝑚. For a given input mode

(

𝜔0, 𝑞0
)

marked with yellow pentagrams, the possible output
modes are distributed along the dispersion curve of the uncoupled mode (red curves). As can be seen in Fig. 5(a), the closer the
coupled mode

(

𝜔1, 𝑞1
)

is to the resonance frequency of the unmodulated oscillator, the shorter the normalized conversion length
appears to be. On the other hand, inverted amplification factor decays as the coupled frequency 𝜔1 increases. Further, analytical
calculations about various combinations of 𝛿𝐾 and K, shown in Fig. 5(c) and (d), indicate that an increase in 𝛿𝐾 leads to a decrease
in the normalized conversion length 𝑄𝑑 when 𝐾 is fixed. This can be derived from Eqs. (35) and (39) as well. By contrary, when 𝛿𝐾
is fixed, an increase in 𝐾 results in an increasing 𝑄𝑑. This behavior is more prominent at larger 𝛿𝐾. On the other hand, the variation
in 𝛿𝐾 barely affect the inverted amplification factor 1

|𝐶|

, as can also be observed in Eqs. (35) and (39). However, an increasing 𝐾

magnifies 1 .
9
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Fig. 5. Dependence of the normalized conversion length 𝑄𝑑 (a) and the inverted amplification factor 1
|𝐶|

(b) on
(

𝜔1 , 𝑞1
)

for an incidence at the mode
(

𝜔0 , 𝑞0
)

,
marked with yellow pentagrams. The pattern-hatched areas denote the bulk regions, and the red curves are the dispersion curves of the Rayleigh wave in the
unmodulated system. (c) and (d) show dependence of log(Qd) and 1

|𝐶|

, respectively, on the variations of 𝐾 and 𝛿𝐾. Here, 𝐾0 = 2.4 × 103𝑁∕𝑚.

1.6. Reflection-type conversion

For the locking pair C, the two wavenumbers of the coupled modes are opposite in sign. In this case, reflection-type conversion
takes place. Subsequently, expression (69) can be corrected to

𝛿𝑞± = 𝛿𝜔
2

(

1
𝑣0𝑔

+ 1
𝑣1𝑔

)

± 𝑖

√

√

√

√

√

E12E21

𝑏0𝑏1𝑣0𝑔𝑣1𝑔
−

[

𝛿𝜔
2

(

1
𝑣0𝑔

− 1
𝑣1𝑔

)]2

= ±𝑖𝛿𝑞𝑐 + 𝛿𝑞𝑏 (40)

As can be seen the first-order correction wavenumber are complex valued in the vicinity of 𝜔0, specifically for the range

|𝛿𝜔| ≤ 2
|

|

|

|

|

1
𝑣0𝑔

− 1
𝑣1𝑔

|

|

|

|

|

−1 √
E12E21

𝑏0𝑏1𝑣0𝑔𝑣1𝑔
(41)

In this way, the solution for 𝝋0(𝜔0, 𝑞0) incident from the right side is, for 𝑥 > 0,

𝝋 = 𝑉0+𝑒
−𝛿𝑞𝑐𝑥

(

𝝋0𝑒𝑖(𝑞0𝑥−𝜔0𝑡) +
(

𝐶𝑎 + 𝐶𝑏
)

𝝋1𝑒𝑖(𝑞1𝑥−𝜔1𝑡)
)

𝑒𝑖(𝛿𝑞𝑏𝑥−𝛿𝜔𝑡) (42)

Solution (42) indicates that at
(

𝜔0, 𝑞0
)

the right incidence 𝝋0 penetrates into the space–time modulated medium exponentially
decaying to vanish within a distance of order 1

|𝛿𝑞𝑐|
, and then is reflected into 𝝋1(𝜔1, 𝑞1) propagating at 𝑞1 opposite to 𝑞0. This

behavior is graphically illustrated as two band gaps at the locking pairs C, as shown in Fig. 3.

2. Numerical results and discussions

2.1. Prediction of dispersion curve

To validate our analytical modeling, a transient simulation is conducted using COMSOL Multiphysics to predict the dispersion
curve in the modulated system. A 2-cycle broadband burst signal, centered at 𝜔𝑐 = 𝛺 and described as 𝐴0 sin

(

𝜔𝑐 𝑡
) [

1 − cos
(

𝜔𝑐 𝑡∕2
)]

is
used to generate Rayleigh waves propagating in different directions, as shown in Fig. 6(a). The low-reflecting boundaries are adopted
in the ends of boundary to reduce reflection. On the surface, 600 oscillators are distributed uniformly with a spacing 𝑙𝑠 = 𝜆𝑚∕20.
Dispersion curve of Rayleigh wave propagation in the system with oscillators is numerically secured, which is also validated by
analytical solution (see Appendix F). After that, the space–time modulation is applied to 600 oscillators and numerical simulation
is then conducted to obtain time-domain signals of the Rayleigh wave at different locations. The 2D Fourier transform in space and
in time is adopted on the obtained signals to retrieve the dispersion curve with non-zero modulation for both directions. The results
10
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Fig. 6. (a) Schematic illustration of the numerical model used to retrieve the dispersion curve. The top panel gives the time- and frequency-domain spectra of
the excitation. The bottom panel shows the numerical model, with a space–time modulation (STM) area highlighted in gray and composed of 600 oscillators.
The black dashed arrow indicates the modulation direction. Two sources carrying the above excitation are placed, as highlighted in green. The low-reflecting
boundaries (LRBs) are applied to minimize the effects of the undesired reflected waves. (b) The recovered dispersion curve is numerically obtained through a 2D
Fourier transform. The blue dashed lines correspond to the dispersion curve of shear bulk waves. In particular, the green windows highlight the two pairs (A)
and (B) and the coupling between the first-order and second-order harmonics (C). The color maps of the insets are adjusted accordingly for better visualization
of the details of dispersion relation.

are shown in Fig. 6(b) and great agreement with the analytical prediction is illustrated in Fig. 3(d). In the figure, two non-reciprocal
veering pairs A and B discussed in the analytical section can be directly visualized. However, the locking pair C at lower frequencies
is hardly seen in Fig. 6(b) due to its extremely narrow band gap for the given modulation parameters. Anyway, the non-reciprocal
scattering is numerically witnessed here in the vicinity of the two veering pairs on the recovered dispersion curves. Scattering of
elsewhere on the dispersion curve of fundamental harmonic will be reciprocal. Aside from the couplings between the fundamental
and first-order harmonics, we can also observe the couplings between other higher-order harmonics. In particular, one of them is
highlighted in Fig. 6(b) by the green window (C), which reveals the coupled mode 𝝋1 ∩ 𝝋2. This has not been discussed in detail
in the analytical section since the strengths of the higher-order couplings are relatively weak compared to the ones of lower-order
couplings, as can be seen in Fig. 6(b).

2.2. Non-reciprocal transmission

Numerical simulation is also conducted to confirm the non-reciprocal propagation of the Rayleigh wave, as shown in Fig. 7(a). We
first test the non-reciprocity at the veering pair B (0.668 Ω, 1.469𝑄), which corresponds to the case of the right-going Rayleigh wave
by placing a modulation area comprising of 1000 unit cells between two free surfaces. The excitation used here is once again the tone
burst signal, but with a much narrower linewidth (50 cycle) and a center frequency at 0.668 Ω. The source, highlighted as the green
point in Fig. 7, here consists of only a single point load which is embedded in the space–time modulation area. The excited Rayleigh
wave propagates along two opposite directions; see Fig. 7(a). The time-domain signals, collected at the two highlighted points,
are shown in Fig. 7(b) for both directions of Rayleigh wave propagation. For the right-going incidence, i.e. along the modulation
direction, the time-domain response (red in Fig. 7(b)) is greatly distorted and delayed due to the coexistence of modes 𝝋0, 𝝋1

and even 𝝋2 with difference group velocities. While for the left-going incidence (blue dashed in Fig. 7(b)), the time-domain signal
11
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Fig. 7. Schematic illustrations of the simulation models. Unlike the previous case of retrieving the dispersion diagram, there are in total 1000 spring–mass
oscillators involved, and a point load, embedded in the center of the space–time modulation area, is assigned to serve as the source. Two points (red and
blue) separating equally to the source are designated to collect the time-domain response. The arrow denotes the direction of modulation. In this way, the
red point corresponds to the Rayleigh wave propagation along the direction of modulation while the blue one indicates the opposite scenario. (b) presents the
time-domain signals collected at the two points indicating different directions of incidence. The corresponding frequency-domain spectra (c) are derived through
Fourier transform. The nearly total conversion of pair B takes place at the spectral position highlighted by the circles. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

resembles the excitation, indicating that the modulation barely functions for this direction. The corresponding frequency spectra are
illustrated in Fig. 7(c) through Fourier transformation of the time-domain data. Comparison between the illustrated results prove
the non-reciprocity at the veering pair B. The right-going Rayleigh wave at 𝝋0(0.668 Ω, 1.469𝑄) nearly undergoes a total conversion
into the first-order harmonic 𝝋1(0.668 Ω + 𝜔𝑚, 1.469𝑄 + 𝑞𝑚) and even the second-order harmonic 𝝋1(0.668 Ω + 2𝜔𝑚, 1.469𝑄 + 2𝑞𝑚),
as has been denoted by the black circles in Fig. 7(c). On the contrary, the left-going Rayleigh wave at 𝝋0 does not experience any
conversion, demonstrating non-reciprocal propagation of the Rayleigh wave in our proposed system. Fig. 8(a) and (b) show the
harmonic frequency spectra against the oscillator positions for the two opposite propagation directions. The spectra were produced
through Fourier transform upon the time-domain data of displacement 𝑤 collected at all the spring–mass oscillators. They reveal the
harmonic conversion process while the Rayleigh waves propagate in the two opposite directions. In Fig. 8(a), since the propagation
direction is identical to the modulation speed 𝑣𝑚, the incidence excites both the first- and second-order harmonics (see Fig. 7).
During the propagation within the modulated area, the intensity of the incident fundamental harmonic component reaches the local
maximum when the first-order and second-order harmonic components reach their local minimums, and vice versa. While for the
left-going wave, no such conversion occurs, and the intensity of the incident harmonic component remains unchanged when the
wave propagates in the left direction [see Fig. 8(b)]. In Figs. 8(c) and (d), we plot the time-frequency-amplitude maps for the two
receiver stations indicated as blue and red points in Fig. 7. Since there always exists a trade-off between the frequency and time
resolutions, here we set the frequency resolution as 0.0233 Ω, corresponding to a time resolution of 0.1243 μs. Three different colors
are used to highlight the analytically predicted frequencies of the incident fundamental, excited first- and second-order harmonics.
Fig. 8(c) shows the results collected at the red point (identical position of the red point in Fig. 7) for the right-going wave. The
incident harmonic is converted into the first-order and second-order harmonics soon after the incidence reaches the red point. The
first-order and second-order harmonic components last longer in time at this receiver station than the incident harmonic one does
since the group velocities of the first-order and second-order harmonics are smaller than that of the incident harmonic (see Figs. 3
and 6). In addition, along the modulation direction, the incident harmonic component appears to be more durable in terms of time
than that of the opposite case [see comparison between Fig. 8(c) and (d)]. This is simply because around the veering pairs (𝜔0∩1, 𝑞0∩1)
corrected by Eq. (36), the dispersion curve gives smaller group velocities when compared to the uncoupled area (𝜔0∩1,−𝑞0∩1) (see
Figs. 3 and 6). As for the left-going Rayleigh wave, nearly no conversion between the incident and the higher order harmonics can
be visualized [see Fig. 8(d)]. Note that the results in Fig. 8(c) and (d) can clearly illustrate the non-reciprocal harmonic conversion,
even though the time resolution is not considered high owing to the compromise we have made between the transient simulation
efficiency and the simulation time span (currently 0.85 μs). To better the quality of the time-frequency-amplitude maps, one can
increase the simulation time span while preserving the current simulation sampling frequency (currently 8 GHz).
12
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Fig. 8. Illustration of the harmonic conversion process. (a) and (b) Evolution of the harmonic spectra of the Rayleigh waves propagating against the oscillator
position along the two opposite directions. (c) and (d) Time-frequency-amplitude maps for the two receiver stations in Fig. 7. (c) corresponds to the right-going
wave collected at the red point, while (d) corresponds to the left-going wave collected at the blue point. In (c) and (d), the blue, red and green lines represent
the frequencies of the incident fundamental, excited first-order and second-order harmonics, respectively. The frequency resolution is taken as 0.0233 Ω, which
consequently leads to a time resolution of 0.1243 μs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 9. Mode conversion of pair B. The displacements of oscillator masses 𝑍 (red solid) and the displacement 2𝑤 (blue dashed) are plotted against the oscillator
position at various time instants. For clear observation, the vertical displacement 𝑤 has been magnified by 2. The green dashed line represents the position of
the source.

2.3. One-way mode conversion

Mode conversion of Rayleigh waves can be realized in the proposed system. The spectral relocation of the energy of the veering
pair B shown in Fig. 7(c) refers to an acoustic–acoustic conversion, as can be concluded from Fig. 3(b) and (d). It indicates that
the incidence starts from in-phase oscillations between the displacement of oscillator mass 𝑍 and the vertical displacement of the
surface 𝑤 undergoes a transition between higher-order harmonics, and still remains in-phase. As can be seen in Fig. 9, at 𝑡 = 0.05
13
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Fig. 10. (a) The center frequency of the tone-burst is selected so as to match pair A. Other settings are identical to those in Fig. 7 except only 900 oscillators
are included and the source is still positioned inside the modulation area but close to the right end of the modulation area. (b) The time-domain and the
corresponding frequency-domain spectrum are presented, showing the generation of higher-order harmonics. (c) Similar to Fig. 9, the time-domain signals for 𝑍
(blue dashed) and 2𝑤 (red solid) are shown in functions of oscillator position at different time instants. The inset provides a magnified view of the initial state
of the combined spring–mass semi-infinite system.

μs, the system starts from in-phase oscillations between 𝑍 (blue dashed) and 2𝑤 (red solid). As the Rayleigh wave propagates along
the modulation direction (right half of Fig. 9), it undergoes a mode conversion from 𝝋0, with longer wavelength, to 𝝋1, with shorter
wavelength. The oscillator mass displacements 𝑍 are obviously amplified after 𝑡 = 0.2 μs due to the fact that the generated first-order
harmonics 𝝋1 locates quite close to the resonance frequency 𝛺; see Fig. 3. Moreover, 𝝋1 propagates slower than 𝝋0 does, since they
differs in terms of group velocity; see Fig. 3. Compared to the mode conversion case, the trivial scenario with the direction of
incidence opposite to the modulation direction exhibits neither mode conversion nor amplified displacement 𝑍, as can be seen from
the left half of Fig. 9. The oscillation between 𝑍 and 𝑤 remains in-phase, once again indicating the acoustic branch. Interestingly,
slow wave phenomenon for the incidence 𝝋0 can also be observed as can be seen from the comparison between these two cases.
The propagation speeds for two opposite directions are different. Most importantly, the mode conversion in our proposed system is
not restricted to acoustic–acoustic and the conversion between acoustic and optical modes can be achieved by choosing appropriate
modulation parameters

(

𝜔𝑚, 𝜆𝑚
)

. In Fig. 10, we send in a tone-burst signal centered at 1.18 Ω at the green point, which corresponds
to the selection of the veering pair A (Fig. 3(a)). Similarly to the case of pair B, nearly total conversion can be observed from 𝝋0

at 1.17 Ω to 𝝋1 at 1.18 Ω − 𝜔𝑚, as illustrated in Fig. 10(b). To reveal the optical–acoustic conversion of this pair, we then plot
in Fig. 10(c) the transient signal against the oscillator position as we have already done for pair B in Fig. 9. Unlike pair B, the
system operating at pair A initiates from out-of-phase oscillations of 𝑍 and 𝑤 at the instant 𝑡 = 0.05 μs, corresponding to the optical
mode; see the highlighted inset of Fig. 10(c) for an amplified view. While the Rayleigh wave propagates along the correct direction,
namely, opposite to the modulation direction, it undergoes a conversion from the optical mode to the acoustic one and the relative
phase difference between 𝑍 and 𝑤 gradually vanishes, suggesting that the system operates now at the acoustic mode. Also, at the
output frequency 1.18 Ω − 𝜔𝑚 close to the resonant frequency 𝛺, the strength of 𝑍 experiences a great amplification.

3. Conclusion

In summary, we theoretically introduce a strategy to realize the non-reciprocal propagation of Rayleigh waves and the associated
one-way mode conversion, with the help of space–time modulated spring–mass oscillators distributed on the surface of the hosting
medium. In the proposed system, the spring constant is modulated temporarily and spatially at the same time in a wave-like
fashion. The resulting ‘‘pump wave’’ breaks the time-reversal symmetry, and hence gives birth to the non-reciprocal phenomena.
The interactions between this ‘‘pump wave’’ and the traveling Rayleigh wave deliver a remarkable consequence that the group
velocities in the vicinity of the interactions require to be corrected accordingly. Analytical and numerical approaches well recover the
perturbed dispersion diagram in the presence of the space–time modulation. More importantly, three non-reciprocal pairs, enabling
non-reciprocal propagations of Rayleigh waves, are revealed by solving the coupling of harmonics around the interaction points. One
of them exhibits the one-way mode conversion between the acoustic and the optical modes. Further, tunability has been investigated
as well to provide information and guidance for the potential experimental implementations in the future.
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Appendix A. Derivation of characteristic equation of Rayleigh wave to the leading order

Due the similarity between Eqs. (11) and (12), we mainly focus on the derivation related to Eq. (11). By solving Eq. (11) for
𝐷𝑗

1 (𝑧) and considering Rayleigh waves decaying towards +𝑧-direction, the leading-order terms of the 𝑗th-order harmonic component
of expression (9) reads

𝛷𝑗 = 𝐴1𝑒
−𝑞𝑗𝑝𝑗𝑧𝑒𝑖𝑗𝜉𝑒𝑖(𝑞𝑥−�̃�𝑡) (43)

with 𝑝𝑗 =
√

1 − 𝜔2
𝑗∕𝑐

2
𝐿𝑞

2
𝑗 . Similarly, one can obtain the leading-order shear potential function as

𝛹 𝑗 = 𝐵1𝑒
−𝑞𝑗 𝑠𝑗𝑧𝑒𝑖𝑗𝜉𝑒𝑖(𝑞𝑥−�̃�𝑡) (44)

with 𝑠𝑗 =
√

1 − 𝜔2
𝑗∕𝑐

2
𝑇 𝑞

2
𝑗 . In above equations, 𝐴1 and 𝐵1 are arbitrary wave amplitudes. Therefore, the leading-order terms of

displacements 𝑢 and 𝑤 of the 𝑗th-order harmonic can be obtained as

𝑢𝑗 = 𝜕𝑥𝛷
𝑗 + 𝜕𝑧𝛹

𝑗 = 𝑞𝑗 (𝑖𝐴1𝑒
−𝑞𝑗𝑝𝑗𝑧 − 𝑠𝑗𝐵1𝑒

−𝑞𝑗 𝑠𝑗𝑧)𝑒𝑖𝑗𝜉𝑒𝑖(𝑞𝑥−�̃�𝑡) (45)

𝑤𝑗 = 𝜕𝑧𝛷
𝑗 − 𝜕𝑥𝛹

𝑗 = −𝑞𝑗 (𝑝𝑗𝐴1𝑒
−𝑞𝑗𝑝𝑗𝑧 + 𝑖𝐵1𝑒

−𝑞𝑗 𝑠𝑗𝑧)𝑒𝑖𝑗𝜉𝑒𝑖(𝑞𝑥−�̃�𝑡) (46)

and the leading-order terms of the two stress components can be written as

𝜎𝑗𝑧𝑧 = 𝜇 𝑞2𝑗 (𝑟𝑗𝐴1𝑒
−𝑞𝑗𝑝𝑗𝑧 + 2𝑖𝑠𝑗𝐵1𝑒

−𝑞𝑗 𝑠𝑗𝑧) 𝑒𝑖𝑗𝜉𝑒𝑖(𝑞𝑥−�̃�𝑡) (47)

𝜎𝑗𝑥𝑧 = 𝜇 𝑞2𝑗 (−2𝑖𝑝𝑗𝐴1𝑒
−𝑞𝑗𝑝𝑗𝑧 + 𝑟𝑗𝐵1𝑒

−𝑞𝑗 𝑠𝑗𝑧) 𝑒𝑖𝑗𝜉𝑒𝑖(𝑞𝑥−�̃�𝑡) (48)

where 𝜇 is the shear modulus and 𝑟𝑗 = 2 − 𝜔2
𝑗∕𝑐

2
𝑇 𝑞

2
𝑗 . On the other hand, the equation of motion of surface oscillators is written as

𝑚𝜕2𝑡 𝑍
𝑗 +𝐾𝑚

(

𝑍𝑗 −𝑤𝑗
𝑧=0

)

= 0 (49)

where 𝑍𝑗 is the 𝑗th-order harmonic component of the mass displacement up to the leading-order correction. Assuming a traveling
wave solution reading 𝑍 =

∑

𝑗∈Z 𝑍𝑗
0𝑒

𝑖𝑗𝜉𝑒𝑖(𝑞𝑥−�̃�𝑡) for the oscillator mass motion and keeping only the leading-order terms, Eq. (49)
becomes then

𝑍𝑗 =
𝛺2𝑤𝑗

𝑧=0

𝛺2 − 𝜔2
𝑗

(50)

where 𝛺 =
√

𝐾∕𝑚 represents the resonant frequency of the unperturbed oscillators. The exerted stress by the oscillators on the
surface reads

𝜎𝑜𝑠𝑐𝑧𝑧 =
𝐾2(𝑍

𝑗
0 −𝑤𝑗

0)
𝐴

=
𝐾𝜔2

𝑗𝑤
𝑗
𝑧=0

𝐴
(

𝛺2 − 𝜔2
𝑗

) (51)

ith 𝐴 denoting the occupied area of each oscillator. Applying the boundary conditions 𝜎𝑗𝑧𝑧,𝑧=0 = −𝜎𝑜𝑠𝑐𝑧𝑧 and 𝜎𝑗𝑥𝑧,𝑧=0 = 0 and
liminating the two arbitrary wave amplitudes, we obtain the characteristic equation of leading-order correction which describes
he Rayleigh wave dispersion in the presence of space–time modulated oscillators (see Eq. (14) in the main text).
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a
𝑥

Appendix B. Derivation of orthogonality condition

Following the effective body forces given in the main text and considering the fact that the first-order correction terms are
ll periodic with respect to 𝜉, we take average on the forced governing equations to eliminate the propagating effect along the
-direction as

[

−𝑞20 (2𝜇 + 𝜆) + 𝜇𝜕2𝑧 𝑖𝑞0 (𝜇 + 𝜆) 𝜕𝑧
𝑖𝑞0 (𝜇 + 𝜆) 𝜕𝑧 (2𝜇 + 𝜆) 𝜕2𝑧 − 𝑞20𝜇

]

𝛿𝝋 + 𝑭 = −𝜔2
0𝜌𝛿𝝋 (52)

−𝐾
(

⟨𝛿𝑍⟩ − ⟨𝛿𝑤𝑧=0⟩
)

+ ⟨𝐺⟩ = −𝜔2
0𝑚 ⟨𝛿𝑍⟩ (53)

(

𝑖𝑞0𝜇 ⟨𝛿𝑤⟩ + 𝜇𝜕𝑧 ⟨𝛿𝑢⟩
)

𝑧=0 = ⟨𝐻⟩ (54)
[

𝑖𝑞0𝜆 ⟨𝛿𝑢⟩ + (2𝜇 + 𝜆) 𝜕𝑧 ⟨𝛿𝑤⟩

]

𝑧=0 = −𝐾∕𝐴
(

⟨𝛿𝑍⟩ − ⟨𝛿𝑤𝑧=0⟩
)

+ ⟨𝐼⟩ (55)

where the averaging operator takes the form of ⟨⟩ ≡ 1∕2𝜋 ∫ 2𝜋
0 . By projecting the governing equation (52) onto the complex conjugate

mode shape 𝝋∗ and integrating over the semi-infinite space along the +𝑧-direction, we have

− 𝑖𝑞0𝜆
(

𝑢𝑎𝑠𝑡 ⟨𝛿𝑤⟩

)

𝑧=0 −
[

𝑢∗
(

𝑖𝑞0𝜇 ⟨𝛿𝑤⟩ + 𝜇𝜕𝑧 ⟨𝛿𝑢⟩
)]

𝑧=0 + 𝜇
(

𝜕𝑧𝑢
∗
⟨𝛿𝑢⟩

)

𝑧=0

−
[

𝑢∗
(

𝑖𝑞0𝜆 ⟨𝛿𝑢⟩ + (2𝜇 + 𝜆) 𝜕𝑧 ⟨𝛿𝑤⟩

)]

𝑧=0 − 𝑖𝑞0𝜇
(

𝑤∗
⟨𝛿𝑢⟩

)

𝑧=0

+ (2𝜇 + 𝜆)
(

𝜕𝑧𝑤
∗
⟨𝛿𝑤⟩

)

𝑧=0 + ∫

∞

0
𝝋∗ ⋅ ⟨𝑭 ⟩ 𝑑𝑧 = 0

(56)

The presence of the space–time modulation in this work makes the whole system a forced and non-Hermitian (non self-adjoint)
system, which could be readily seen from Eq. (56) having been left multiplied by the complex conjugate eigenvector 𝝋∗ and right
multiplied by 𝛿𝝋 (being left multiplied by 𝝋 will simply lead to complex eigenvalues rather than the current negative, real ones).
Following the notation in Mokhtari et al. (2019), this further implies the bi-orthogonality relation ∫ ∞

0 𝝋∗𝑩𝛿𝝋𝑑𝑧 = 0, where the
operator 𝑩 is an identity matrix in this work. In addition, the continuous part of the forced system has non-zero modulation-
induced effective body force 𝑭 . As has been mentioned in the main text, in order for this system to remain stable, the body force
needs to do deliver zero work within the entire semi-infinite medium, i.e. ∫ ∞

0 𝝋∗ ⋅ ⟨𝑭 ⟩ 𝑑𝑧 = 0 must hold, which returns equation
(56) and corresponds to a continuous version of the discrete orthogonality condition presented in our recent paper (Nassar et al.,
2017b). Based on the governing equation (53) and boundary conditions (54) and (55), and considering the complex conjugates of
the leading-order stress boundary conditions and the governing equation of motion of oscillators, we further simplify Eq. (56) into

𝑚𝜔2
0

𝐴
(

𝑤∗
𝑧=0 ⟨𝛿𝑍⟩ −𝑍∗

⟨𝛿𝑤𝑧=0⟩
)

+𝑤∗
𝑧=0

(

⟨𝐺⟩

𝐴
− ⟨𝐼⟩

)

−𝑢∗𝑧=0 ⟨𝐻⟩ + ∫

∞

0
𝝋∗ ⋅ ⟨𝑭 ⟩ 𝑑𝑧 = 0 (57)

Combining Eqs. (13), (53) and (57), we reach eventually the orthogonality condition (28) in the main text.

𝑤∗
𝑧=0

(

𝑄0
𝐴

⟨𝐺⟩ − ⟨𝐼⟩
)

− 𝑢∗𝑧=0 ⟨𝐻⟩ + ∫

∞

0
𝝋∗ ⋅ ⟨𝑭 ⟩ 𝑑𝑧 = 0 (58)

Appendix C. Expressions of 𝒂𝒋 and 𝒃𝒋

In the main context, the detailed expressions of 𝑎𝑗 and 𝑏𝑗 , 𝑗 ∈ Z, can be expressed as

𝑎𝑗 = 2(𝜇 + 𝜆)𝑞2𝑗 𝑝𝑗
(𝑠𝑗𝑝𝑗 − 1)(𝑠𝑗 − 𝑝𝑗 )

𝑟𝑗 (𝑝𝑗 + 𝑠𝑗 )
− 2𝑞2𝑗 (2𝜇 + 𝜆)

(

1
2𝑝𝑗

−
4𝑠𝑗𝑝𝑗

𝑟𝑗 (𝑝𝑗 + 𝑠𝑗 )
+

2𝑠𝑗𝑝2𝑗
𝑟2𝑗

)

− 2𝜇𝑞2𝑗 𝑝
2
𝑗

(

1
2𝑝𝑗

− 4
𝑟𝑗 (𝑝𝑗 + 𝑠𝑗 )

+ 2
𝑟2𝑗 𝑠𝑗

)

− 𝜇𝑞2𝑗 𝑝𝑗

(

1 − 2
𝑟𝑗

)(

1 − 2
𝑠𝑗𝑝𝑗
𝑟𝑗

)

+ 𝜆𝑞2𝑗 𝑝𝑗

(

1 − 2
𝑟𝑗

)(

1 −
2𝑠𝑗𝑝𝑗
𝑟𝑗

)

𝑏𝑗 = 2𝑞𝑗𝜌𝜔𝑗

(

1
2𝑝𝑗

−
4𝑠𝑗𝑝𝑗

𝑟𝑗 (𝑝𝑗 + 𝑠𝑗 )
+

2𝑠𝑗𝑝2𝑗
𝑟2𝑗

)

+ 2𝑞𝑗 𝑝2𝑗𝜌𝜔𝑗

(

1
2𝑝𝑗

− 4
𝑟𝑗 (𝑝𝑗 + 𝑠𝑗 )

+ 2
𝑟2𝑗 𝑠𝑗

)

− 2𝑚
𝐴

𝜔𝑗𝑞𝑗𝑝𝑗

(

1 − 2
𝑟𝑗

)

𝑄𝑗𝑍
𝑗

(59)

Appendix D. Derivation of the first-order correction on the dispersion curves of coupled modes

Similarly to the uncoupled scenario, we take average on the complete effective body forces for the coupled scenario in Eq. (33).
In this case, the first-order harmonic 𝝋1 is eliminated. The averaged effective body forces are the same as Eq. (29), except for the
averaged body forces ⟨𝐺⟩

0 and ⟨𝐼⟩0 taking different forms

⟨𝐺⟩

0 = −𝑉
⟨

𝛿𝐾𝑒𝑖𝜉
⟩ (

𝑍1 −𝑤1 )

+ 2𝑚𝜔 𝛿𝜔𝑉 𝑍0 (60)
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A
g
c

w

B

W

⟨𝐼⟩0 = 𝑉1

⟨

𝛿𝐾 (𝜉) 𝑒𝑖𝜉
⟩

𝐴
(

𝑍1 −𝑤1
𝑧=0

)

− 𝑖𝜆𝛿𝑞𝑉0𝑢
0
𝑧=0 (61)

Multiplying the effective body forces (33) by 𝑒−𝑖𝜉 and operating average simply gets rid of the fundamental harmonic 𝝋0 and return
the effective body forces of the first-order harmonic 𝝋1.

⟨𝑭 ⟩

1 =
⎡

⎢

⎢

⎣

𝑉1
[

−2𝑞1𝛿𝑞 (2𝜇 + 𝜆) + 2𝜌𝜔1𝛿𝜔
]

𝑢1 + 𝑖 (𝜇 + 𝜆) 𝛿𝑞𝜕𝑧𝑉1𝑤1

𝑉1
[

−2𝜇𝑞1𝛿𝑞 + 2𝜌𝜔1𝛿𝜔
]

𝑤1 + 𝑖 (𝜇 + 𝜆) 𝛿𝑞𝜕𝑧𝑉1𝑢1

⎤

⎥

⎥

⎦

(62)

⟨𝐺⟩

1 = −𝑉0
⟨

𝛿𝐾𝑒−𝑖𝜉
⟩ (

𝑍0 −𝑤0
𝑧=0

)

+ 2𝑚𝜔1𝛿𝜔𝑉1𝑍
1 (63)

⟨𝐻⟩

1 = −𝑖𝜇𝛿𝑞𝑉1𝑤1
𝑧=0 (64)

⟨𝐼⟩1 = 𝑉0

⟨

𝛿𝐾 (𝜉) 𝑒−𝑖𝜉
⟩

𝐴
(

𝑍0 −𝑤0
𝑧=0

)

− 𝑖𝜆𝛿𝑞𝑉1𝑢
1
𝑧=0 (65)

s can be seen from the expressions (60), (61), (63) and (65), the non-zero space–time modulation 𝛿𝐾 (𝜉) comes into play and
ives rise to the interaction between modes 𝝋1 and 𝝋0. Substituting Eqs. (29), (60), (61) and (62)–(65) into the orthogonality
ondition (28) yields Eq. (34) in the main text.

[

E11 E12
E21 E22

] [

𝑉0
𝑉1

]

= E

[

𝑉0
𝑉1

]

= 0 (66)

here
E11 = 𝑎0𝛿𝑞 + 𝑏0𝛿𝜔

E12 = 𝑞0𝑝0
𝛿𝐾
𝐴

(1 − 2
𝑟0
)
(

𝑍1 + 𝑞1𝑝1(1 −
2
𝑟1
)
)

(

𝑄0 + 1
)

E21 = 𝑞1𝑝1
𝛿𝐾
𝐴

(1 − 2
𝑟1
)
(

𝑍0+𝑞0𝑝0(1 −
2
𝑟0
)
)

(

𝑄1 + 1
)

E22 = 𝑎1𝛿𝑞 + 𝑏1𝛿𝜔

(67)

and
⟨

𝛿𝐾𝑒𝑖𝜉
⟩

=
⟨

𝛿𝐾𝑒−𝑖𝜉
⟩

= 𝛿𝐾.

Appendix E. Details of deriving the conversion parameters of veering pairs

In this appendix, the derivation highly resembles that introduced in Nassar et al. (2017b). For the veering pairs discussed in the
main text, we repeat the group velocities for the uncoupled harmonics:

𝑣0𝑔 = −
𝑎0
𝑏0

, 𝑣1𝑔 = −
𝑎1
𝑏1

(68)

Substituting expression (68) into Eq. (36) and rearranging the resulting equation yields

𝛿𝑞± = 𝛿𝜔
2

(

1
𝑣0𝑔

+ 1
𝑣1𝑔

)

±

√

√

√

√

√

[

𝛿𝜔
2

(

1
𝑣0𝑔

− 1
𝑣1𝑔

)]2

+
E12E21

𝑏0𝑏1𝑣0𝑔𝑣1𝑔
= ±𝛿𝑞𝑎 + 𝛿𝑞𝑏 (69)

y assuming a conversion coefficient 𝐶 = 𝑉1
𝑉0

, we have

𝐶± =

(

𝛿𝑞± − 𝛿𝜔
𝑣0𝑔

)

𝑏0𝑣0𝑔
E12

=

((

1
𝑣1𝑔

− 1
𝑣0𝑔

)

𝛿𝜔 ±
(

𝛿𝑞+ − 𝛿𝑞−
)

)

𝑏0𝑣0𝑔
2E12

= ±𝐶𝑎 + 𝐶𝑏 (70)

hen the excitation frequency 𝜔0 + 𝛿𝜔 is close to the intersection frequency of the coupled mode 𝜔0, based on Eqs. (69) and (70),
the wave solution is a superposition of the two possible wave components

𝝋(𝑥, 𝑡) =
(

𝑉0𝝋0𝑒𝑖(𝑞0𝑥−𝜔0𝑡) + 𝑉1𝝋1𝑒𝑖(𝑞1𝑥−𝜔1𝑡)
)

𝑒𝑖(𝛿𝑞𝑥−𝛿𝜔𝑡)

=
[

𝑉0+𝑒
𝑖𝛿𝑞𝑎𝑥

(

𝝋0𝑒𝑖(𝑞0𝑥−𝜔0𝑡) +
(

𝐶𝑎 + 𝐶𝑏
)

𝝋1𝑒𝑖(𝑞1𝑥−𝜔1𝑡)
)]

𝑒𝑖(𝛿𝑞𝑏𝑥−𝛿𝜔𝑡)

+
[

𝑉0−𝑒
−𝑖𝛿𝑞𝑎𝑥

(

𝝋0𝑒𝑖(𝑞0𝑥−𝜔0𝑡) −
(

𝐶𝑎 − 𝐶𝑏
)

𝝋1𝑒𝑖(𝑞1𝑥−𝜔1𝑡)
)]

𝑒𝑖(𝛿𝑞𝑏𝑥−𝛿𝜔𝑡)

(71)

Without loss of generality, let us assume 𝑥 = 0 is where the Rayleigh wave enters the modulated area. In order for 𝝋0 to be the only
existing one at 𝑥 = 0, we take 𝑉0± =

(

𝐶𝑎 ∓ 𝐶𝑏
)

𝑉0. In this way, the previous solution (71) becomes

𝝋(𝑥, 𝑡) = 2𝑉0[𝐶𝑎 cos
(

𝛿𝑞𝑎𝑥
)

𝝋0𝑒𝑖(𝑞0𝑥−𝜔0𝑡) − 𝑖𝐶𝑏 sin
(

𝛿𝑞𝑎𝑥
)

𝝋0𝑒𝑖(𝑞0𝑥−𝜔0𝑡)

+ 𝑖
(

𝐶2
𝑎 − 𝐶2

𝑏
)

sin
(

𝛿𝑞𝑎𝑥
)

𝝋1𝑒𝑖(𝑞1𝑥−𝜔1𝑡)]𝑒𝑖(𝛿𝑞𝑏𝑥−𝛿𝜔𝑡)
(72)

As 𝑥 increases, the amplitude of 𝝋0 decreases due to the fact that |

|

𝐶𝑎
|

|

≥ |

|

𝐶𝑏
|

|

as long as the space–time modulation is turned on.
Meanwhile, the amplitude of 𝝋1 starts to increase. At 𝑥 = 𝑑 = 𝜋∕

(

2𝛿𝑞
)

, 𝝋0 reaches its minimum while 𝝋1 reaches the maximum.
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Fig. 11. (a) Schematic illustration of the supercell which represents a horizontally infinite semi-infinite medium decorated by non-modulated (𝛿𝐾 = 0) spring–mass
oscillators on the top surface. The discrete points represent the spring–mass oscillators. The top surface is set free while the bottom one is set with low-reflecting
boundary condition (LRB). The two highlighted in blue are Floquet periodic boundary conditions (FPBCs). The 𝑧-directional displacement and the exerted force
by the oscillators are recorded and extracted at the contact point. (b) The bulk band structure obtained from the modal analysis of the supercell is shown in
the left panel. The numerical and analytical results agree well, except for the zone-folding curves. The mode shapes of the two highlighted branches are also
extracted. The corresponding transmission coefficient, shows band gap for the Rayleigh wave around the resonance frequency, which exhibits great agreement
with the supercell analysis.

Typically, the total conversion from 𝝋0 to 𝝋1 can be expected when 𝐶𝑏 = 0, namely, 𝛿𝜔 = 0. In this case, we have the following
expressions in the main text.

𝛿𝑞± = ±

√

E12E21

𝑏0𝑏1𝑣0𝑔𝑣1𝑔
, 𝐶± = ±

𝑏0𝑣0𝑔
E12

√

E12E21

𝑏0𝑏1𝑣0𝑔𝑣1𝑔
(73)

Appendix F. Numerical validation of the unmodulated model

To verify the theoretical part, we conduct numerical simulations using the commercial software COMSOL Multiphysics. In the
theoretical section, we assume a continuous span of spring–mass oscillators whose spring constants are space–time modulated in
a wave-like fashion. However, in real cases the distribution of oscillators cannot be continuous. In order to effectively model the
continuous section, we construct discrete spring–mass oscillators separated by spacing 𝑙𝑠, as shown in Fig. 1, with the help of
lumped mechanical system module, as shown in Fig. 11(a). At first, we start with unmodulated spring–mass oscillators to validate
the simulation model. The parameters used here are identical to those used in the theoretical section (Fig. 1). As shown in Fig. 11(a),
the numerically modeled supercell is shown with its top surface decorated by five non-modulated spring–mass oscillators (𝛿𝐾 = 0).
The spacing is chosen as 𝑙𝑠 = 𝜆𝑚∕20. Since the chosen spacing is much smaller than the operating wavelength, according to the long
wavelength assumption, the discrete oscillators can be equivalently treated as a continuous spring–mass layer at the surface. The
low-reflecting boundary (LRB) condition is applied on the bottom boundary of the supercell for diminishing the undesired reflection
of bulk waves from the bottom. The supercell is bounded horizontally by two vertical Floquet periodic boundaries highlighted in
blue. In this way, the supercell well represents a horizontally infinite system. Discrete points are distributed on the top surface,
corresponding to the spring–mass oscillators. The displacements 𝑤 at the bottom ends of springs are extracted at the points on
the top surface. By contrast, the forces 𝐹 exerted by the oscillators on the top surface is calculated at the bottom ends of springs
and then is applied on the discrete points. The modal analysis gives the calculated bulk band structure shown in the left panel of
Fig. 11(b). The analytical and numerical obtained upper and lower branches are in good agreement. The existence of additional
numerically obtained bands, which do not appear in the analytical section, is due to the zone folding since the supercell corresponds
to a reducible lattice cell. The mode shapes for the upper (optical) and lower (acoustic) branches are also shown in the insets. They
are out-of-phase due to the fact that the band gap is generated by the local resonance. To further verify the model, we construct an
array of 600 non-modulated oscillators. Frequency-domain simulation produces the transmission coefficient which is shown in the
right panel of Fig. 11(b). A band gap for the Rayleigh wave can be visualized, which agrees well with the modal analysis results.
This further proves the validity of our simulation models.
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