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a b s t r a c t 

The topologically polarized isostatic lattices discovered by Kane and Lubensky (2014, Nat. 

Phys. 10, 39–45) challenged the standard effective medium theories used in the modeling 

of many truss-based materials and metamaterials. As a matter of fact, these exhibit Parity 

(P) asymmetric distributions of zero modes that induce a P-asymmetric elastic behavior, 

both of which cannot be reproduced within Cauchy elasticity. Here, we propose a new ef- 

fective medium theory baptized “microtwist elasticity” capable of rendering polarization 

effects on a macroscopic scale. The theory is valid for trusses on the brink of a polarized- 

unpolarized phase transition in which case they necessarily exhibit more periodic zero 

modes than they have dimensions. By mapping each periodic zero mode to a macroscopic 

degree of freedom, the microtwist theory ends up being a kinematically enriched the- 

ory. Microtwist elasticity is constructed thanks to leading order two-scale asymptotics and 

its constitutive and balance equations are derived for a fairly generic isostatic truss: the 

Kagome lattice. Various numerical and analytical calculations, of the shape and distribu- 

tion of zero modes, of dispersion diagrams and of polarization effects, systematically show 

the quality of the proposed effective medium theory. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Periodic trusses are potent idealized models of several materials such as foams, crystals and metamaterials. When the

truss has poor connectivity, the material exhibits a number of zero modes, i.e., deformation modes that cost little to no elas-

tic energy. While catastrophic in many cases, zero modes can still be desirable. In auxetics, for instance, reentrant structures

with approximate zero modes provided some of the first examples of materials with negative Poisson’s ratio ( Lakes, 1987 ).

In applications related to smart materials and robotics, non-linear zero modes are essential in structures that can deploy,

morph, adapt and move ( Milton, 2013a, 2013b, Nassar et al., 2017, 2018; Peraza-Hernandez et al., 2014; Rocklin et al., 2017;

Rus and Tolley, 2018 ). But perhaps the most spectacular application of zero modes in recent years has been in the design

of acoustic “invisibility” cloaks. Indeed, form-invariance, a cornerstone of transformation-based cloaking, can only be ful-

filled thanks to materials with a number of non-trivial zero modes. In acoustics, Norris (2008) identified these materials to

be Milton and Cherkaev ’s (1995) pentamodes; in full elasticity, other materials with zero modes are just as useful ( Nassar

et al., 2018a; 2019; 2020; Xu et al., 2020 ). 
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Nomenclature 

〈 ·, · 〉 The dot product 

∇ , ∇ 

s Gradient and symmetrized gradient operators 

·̄ Rotation through π /2 

· ′ Conjugate transpose, adjoint 

δ, δ2 Prefixes for first and second order corrections 

σ, ε Stress and strain tensors 

C 

∗, C Effective Cauchy and microtwist elasticity tensors 

ε∗, ε Effective Cauchy and microtwist strain energy densities 

j = 1 , 2 , 3 Index of lattice vectors, nodes and bonds 

( l, m, n ) Unit cell index 

r j , e j Dimensional and normalized lattice vectors 

e j ... j Tensorial powers of e j 

x l,m,n 
j 

, x j Position of node j 

u 

l,m,n 
j 

, u j Displacement of node j 

m j , n j Unit vectors orienting the bonds 

a j , b j Bond lengths 

y l,m,n 
j 

, z l,m,n 
j 

Bond elongations 

αj , β j Bond spring constants 

t l,m,n 
j 

, f l,m,n 
j 

Internal and external nodal forces 

m j Mass of node j 

γ Similarity ratio 

� Triangle whose vertices are nodes 1, 2 and 3 

h j Height of node j in triangle �

d Position vector of the center of mass of triangle �

q , ω Wavenumber and angular frequency 

q j , Q j , ∂ j Wavenumber component, unitary complex phase factor and partial derivative in direction r j 
C 0 , C ( q ) Compatibility matrices 

� Column vector of nodal displacements 

I Second-order identity tensor 

D, T Mode shapes of translation and periodic twisting 

w j Distortion parameters 

K, M, C Rigidity, mass and compatibility operators 

F External forces column vector 

F , τ Resultant body force and torque 

ρ , η Effective mass and moment of inertia densities 

B, M, D, A , L Effective constitutive tensors 

k j Equivalent spring constant 

ξ, s Couple stress and hyperstress 

�, ∂�, N A domain, its boundary and the outward unit normal 

κ Effective torsional spring constant of elastic hinges 

e x , e y Cartesian basis vectors 

x , x, y Continuous space variables 

U , ϕ Macroscopic fields of displacement and twisting 

U o , ϕo Translation and twisting amplitudes 

U x , U y Displacement components 

U x,x , ϕ , y , ... Partial derivatives 

q x , q y Cartesian coordinates of wavenumber q 

q R , q I Real and imaginary parts of component q y 
r Decay factor of localized zero mode 

Z Number of zero modes 

ζ Inclination of e y with respect to e 1 
P, P 

KL Topological polarization vectors 

From the point of view of the material’s constitutive law σ = C 

∗ : ε , zero modes appear when the effective elasticity

tensor C 

∗ is singular. Thus, zero modes correspond to compatible fields of strain ε o ( x ) such that C 

∗ : ε o = 0 at each posi-

tion x . Remarkably, if ε o ( x ) is a zero mode then so is ε o (−x ) . More generally, Parity (P) symmetry, namely the invariance
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of the set of solutions under the spatial inversion x �→ −x , is a key feature of Cauchy’s theory of elasticity. Nonetheless,

there are trusses where zero modes systematically grow in amplitude in a preferential direction and systematically decay

in the opposite direction ( Lubensky et al., 2015; Mao and Lubensky, 2018 ). Materials with such underlying trusses have a

broken P-symmetry; we say that they are polarized. Other trusses admit zero modes for which ε o (x ) = 0 (see, e.g., the

same references). To capture such zero modes on the level of the material requires finer measures of strain besides ε and

its gradients. In both cases, Cauchy’s theory is unsatisfactory. It is the purpose of the present paper to propose an enriched

effective medium theory capable of faithfully reproducing microstructural zero modes and related polarization effects on

the continuum scale. Derivations are carried for a fairly generic truss: the Kagome lattice. 

Polarized Kagome lattices came to our attention while reading the elegant work of Kane and Lubensky (2014) on topo-

logical polarization in isostatic lattices. In the detail, a regular, e.g. the standard, Kagome lattice exhibits bulk zero modes

which maintain uniform amplitude across the whole truss. These take the form of zero-frequency Floquet-Bloch eigenmodes

of a given wavenumber. General geometric distortions of the lattice then opens a partial bandgap about the zero frequency

and block these modes at non-zero wavenumbers. Hence, zero modes become “evanescent”; they adopt exponential pro-

files that decay towards the bulk and re-localize at free boundaries. Kane and Lubensky characterized the conditions under

which the re-localization of zero modes towards the free boundaries of a distorted lattice happens unevenly and favors

certain boundaries over their opposites. Note that the found conditions and the resulting P-asymmetric distribution of zero

modes are topological in nature, i.e., they are immune to continuous perturbations, small and large, so long as the aforemen-

tioned zero-frequency gap remains open. This is why such Kagome lattices are qualified as “topologically polarized”. Based

on these principles, Bilal et al. (2017) designed and tested a material featuring a polarized elastic behavior. A finite slab of

their material appears soft when indented on one side and hard when indented on the opposite side. Elastic polarization

effects are not restricted to boundaries and emerge in the bulk as well; see, e.g., Rocklin (2017) . 

Our aim therefore is to reconcile the above observations with an effective theory of elasticity. Following asymptotic

analysis, we find that the theory naturally maps the periodic zero modes of the truss to macroscopic Degrees Of Freedom

(DOFs). For instance, regular Kagome lattices admit three periodic zero modes, two translations and the so-called periodic

twisting. While translations are mapped to the macroscopic displacement field U , periodic twisting is mapped to an extra

DOF ϕ. The resulting effective continuum is called the “microtwist” continuum after the additional periodic zero mode. The

microtwist continuum also has two extra measures of strain, ϕ itself and its gradient, and by way of duality, two extra

measures of stress. By continuity, nearly-regular or weakly-distorted Kagome lattices are also described in the same way

albeit with different effective properties. In that case, periodic twisting is no longer a zero mode strictly speaking but still

corresponds to a highly compliant mechanism. By contrast, we do not deal with strongly-distorted lattices: these may exhibit

strong polarization effects but only within thin boundary layers. We speculate that Cauchy elasticity with ad-hoc boundary

or jump conditions is satisfactory for their continuum modeling; see, e.g., the papers by Marigo and Maurel (2016, 2017) . 

Microtwist elasticity is the outcome of leading order two-scale asymptotic expansions. It is reminiscent of “k · p ” per-

turbation theory used in condensed matter physics ( Dresselhaus et al., 2008 ). In that language, the theory describes the

asymptotic behavior of Kagome lattices near the � point when the acoustic branches and the first optical branch are strongly

coupled, i.e., degenerate or nearly degenerate. Furthermore, the theory bears resemblance to high-frequency asymptotic ho-

mogenization theories (see, e.g., Allaire et al., 2011; Bensoussan et al., 1978; Craster et al., 2010; Harutyunyan et al., 2016;

Makwana et al., 2016 ). 

Several earlier contributions sought generalized effective media for trusses, be them of the micropolar type ( Bacigalupo

and Gambarotta, 2014; Chen et al., 2014; Frenzel et al., 2017; Lakes, 2001; Lakes and Benedict, 1982; Liu et al., 2012; Spadoni

and Ruzzene, 2012 ) or the strain gradient type ( Auffray et al., 2010; Bacigalupo and Gambarotta, 2014; Rosi and Auffray,

2016 ). Often, the aim was to model chiral effects. In that regard, it is worth stressing that chirality, or anisotropy of any

kind for that matter, is fundamentally different from P-asymmetry. Indeed, when the former is concerned with the action of

rotations on the constitutive law, the latter is concerned with the action of the inversion x �→ −x on fields solution to the

motion equation. See, e.g., Nassar et al. (2020) for a theory of elasticity that is chiral but P-symmetric. More relevant to our

purposes is the work of Sun et al. (2012) who hinted at microtwist elasticity in a particular case but did not pursue a full

theory. More recently, Sun and Mao (2019) and Saremi and Rocklin (2020) proposed theories for polarized effective media

of the strain gradient type. Our asymptotic analysis suggests that a kinematically enriched medium is indispensable, at least

in the strong coupling limit of interest here. 

The paper goes as follows: in Section 2 , we classify general Kagome lattices in two phases, regular and distorted, based

on a count of their periodic and Floquet-Bloch zero modes. In Section 3 , we argue why enriching the effective medium is

necessary in the case of regular and weakly-distorted lattices. Subsequently, we deploy two-scale asymptotics and deduce, in

closed form, the constitutive and balance equations governing the effective microtwist continuum. In Section 4 , we compare

and assess both microtwist and Cauchy’s elasticity in reference to the dispersion diagrams of a class of equilateral Kagome

lattices. Section 5 is dedicated to the study of polarization effects, be them topological or not. Most importantly, we demon-

strate how the microtwist theory predicts the onset of polarization in the elastic behavior of Kagome lattices thanks to its

generalized effective elasticity tensors and provides an accurate continuum version of the topological polarization vector of

Kane and Lubensky (2014) . In contrast to discrete methods, we hope that the present theory will provide corrections to the

continuum models of strength of materials widely used by engineers in cases where the constitutive materials are lattice-

like; the theory should also enrich the space of accessible constitutive behaviors so as to permit solving wider classes of

materials inverse design problems. 
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Fig. 1. A general Kagome lattice: (a) a periodic reference configuration; (b) a magnified and annotated unit cell. The displacements of the nodes are shown 

as arrows. The solid and empty circles represent the interior and exterior nodes of the unit cell respectively. Blue bonds with unit vectors m j and red 

bonds with unit vectors n j have respective lengths a j and b j and respective spring constants αj and β j . (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Kagome lattices and their zero modes 

General Kagome lattices are introduced and classified into two phases, regular and distorted, based on the number and

type of zero modes they support. The analysis here is based on the discrete lattice model. A continuum model, suitable for

regular and weakly-distorted lattices, will be derived in the next section. 

2.1. Kinematics and dynamics of Kagome lattices 

Consider the general Kagome lattice depicted in Fig. 1 a in a periodic reference configuration. The lattice is made of a set

of massless spring-like edges connecting massive hinge-like nodes. Vectors r j are lattice vectors: the reference configuration

is invariant by translation along any integer linear combination of the r j . A unit cell is shown on Fig. 1 b: it has three nodes

in its interior, i.e., the filled circles, indexed with j ∈ {1, 2, 3} and initially placed at x j . Index j is always understood modulo

3: if j = 3 then j + 1 = 1 and if j = 1 then j − 1 = 3 . Exterior to the unit cell, but at its boundary, there are three other

nodes drawn as empty circles and whose initial positions are given by x j + r j−1 . Thus, the initial positions of all nodes can

be deduced from the x j according to 

x 

l,m,n 
j 

= x j + x 

l,m,n , x 

l,m,n = lr 1 + m r 2 + n r 3 , (l, m, n ) ∈ Z 

3 . (1)

Here, x l,m,n 
j 

designates the position of node j of unit cell ( l, m, n ). The use of three indices, l, m and n , to describe a 2D

lattice may seem superfluous. Indeed, one has r 1 + r 2 + r 3 = 0 and any combination of r 1 , r 2 and r 3 can be reduced to one

where, say, only r 1 and r 2 are present. Nonetheless, in order to enforce the formal permutation symmetry, namely that the

nodes within a unit cell play equivalent roles and can be numbered arbitrarily, it is preferable to maintain the use of three

vectors r j without expanding any one along the other two. This attitude will greatly simplify later derivations. Note that, as

a side effect, the coordinates ( l, m, n ) of a unit cell are not unique. For instance, (0,0,0) and (1,1,1) designate the same unit

cell. If uniqueness is desired, then one can require the satisfaction of some constraint 1 such as 0 ≤ l + m + n ≤ 2 but this

will not be enforced and should have no influence on what follows. 

The displacement of node j in unit cell ( l, m, n ) is called u 

l,m,n 
j 

. A unit cell has three nodes and therefore a total of six

DOFs. A unit cell further has six edges oriented along the unit vectors m j (red bonds) and n j (blue bonds) and of respective

lengths a j and b j ; see Fig. 1 b. The Kagome lattice is therefore isostatic in the sense that it has as much DOFs as it has bonds

per unit cell. The elongation of the edge along m j (resp. n j ) is called y l,m,n 
j 

(resp. z l,m,n 
j 

). Displacements yield elongations

according to the relations 

y l,m,n 
j 

= 

〈
m j , u 

l,m,n 
j−1 

− u 

l,m,n 
j+1 

〉
, z l,m,n 

1 
= 

〈
n 1 , u 

l,m,n 
3 

− u 

l+1 ,m,n 
2 

〉
, 

z l,m,n 
2 

= 

〈
n 2 , u 

l,m,n 
1 

− u 

l,m +1 ,n 
3 

〉
, z l,m,n 

3 
= 

〈
n 3 , u 

l,m,n 
2 

− u 

l,m,n +1 
1 

〉
. 

(2) 
1 Let ( L, M, N ) designate a unit cell, then any triplet (l, m, n ) ≡ (L + d, M + d, N + d) designates the same cell. Now the integer interval [ −L − M − N, 2 −
L − M − N] is of length 3 and thus necessarily contains a multiple of 3; let that multiple be 3 d . The resulting triplet ( l, m, n ) satisfies the prescribed 

constraint; furthermore, since d is unique, so is ( l, m, n ). 
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Fig. 2. Generic periodic zero mode of a regular Kagome lattice: (a) global translation U o ; (b) a twisting motion of angle ϕo around the center O ; (c) a linear 

combination of a translation and a twisting motion. The initial and deformed configurations are traced in grey and blue respectively. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The tensions in the corresponding edges are given by α j y 
l,m,n 
j 

and β j z 
l,m,n 
j 

where αj and β j are the spring constants of edges

m j and n j respectively. Thus, the internal force t l,m,n 
j 

acting on node j in unit cell ( l, m, n ) reads 

t l,m,n 
1 

= −α2 y 
l,m,n 
2 

m 2 − β2 z 
l,m,n 
2 

n 2 + α3 y 
l,m,n 
3 

m 3 + β3 z 
l,m,n −1 
3 

n 3 , 

t l,m,n 
2 

= −α3 y 
l,m,n 
3 

m 3 − β3 z 
l,m,n 
3 

n 3 + α1 y 
l,m,n 
1 

m 1 + β1 z 
l−1 ,m,n 
1 

n 1 , 

t l,m,n 
3 

= −α1 y 
l,m,n 
1 

m 1 − β1 z 
l,m,n 
1 

n 1 + α2 y 
l,m,n 
2 

m 2 + β2 z 
l,m −1 ,n 
2 

n 2 . (3)

Finally, Newton’s second law can be stated as 

t l,m,n 
j 

+ f l,m,n 
j 

= m j ̈u 

l,m,n 
j 

, (4)

where m j is the mass of node j and f l,m,n 
j 

is an external force applied to node j of unit cell ( l, m, n ). 

In what follows, without loss of generality, we let the origin of coordinates “O ” be the geometric center of the red triangle

� ≡ ( a 1 m 1 , a 2 m 2 , a 3 m 3 ). Accordingly, the reference positions of the three interior nodes, with respect to the origin, are 

x j = 

a j+1 m j+1 − a j−1 m j−1 

3 

. (5)

For later purposes, we also define x̄ j to be the image of x j by a plane rotation of angle π /2. More generally, a superimposed

bar will symbolize a plane rotation of π /2. 

2.2. Zero modes 

We call zero mode , a static displacement solution to Newton’s equation in the absence of external loading, i.e., a solution

u 

l,m,n 
j 

to 

t l,m,n 
j 

= 0 . (6)

Equivalently, a zero mode is a configuration of the lattice which stretches and compresses no bonds so that 

y l,m,n 
j 

= z l,m,n 
j 

= 0 . (7)

In this sense, rigid body translations and rotations are zero modes. Kagome lattices admit a number of other, more

interesting, zero modes all inherited from the elementary twisting mechanism illustrated on Fig. 2 . Understanding the zero

modes of Kagome lattices is essential to justify the need for the generalized theory of elasticity introduced in the next

section. Thus, zero modes are studied in the remainder of this section in some detail. This is also an occasion to gain insight

into the geometry of Kagome lattices and to familiarize the reader with the introduced notations. In particular, we will

investigate periodic and Floquet-Bloch zero modes. 

2.3. Periodic zero modes 

We call periodic 2 a configuration that does not depend on the indices ( l, m, n ) of unit cells, i.e., 

u 

l,m,n 
j 

= u j . (8)
2 Periodicity here is reserved for invariance by translation along the lattice vectors r j . Mode shapes that are invariant by translation along some other 

vectors will not be referred to as periodic. Equivalently, only modes with a vanishing wavenumber (modulo the reciprocal lattice) are qualified as periodic. 
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Zero mode or not, dismissing the dependence over ( l, m, n ) greatly simplifies the governing equations. For instance, elonga-

tions are given by the matrix product ⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

y 1 
y 2 
y 3 
z 1 
z 2 
z 3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= C 0 

[ 

u 1 

u 2 

u 3 

] 

, C 0 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 −m 

′ 
1 m 

′ 
1 

m 

′ 
2 0 −m 

′ 
2 

−m 

′ 
3 m 

′ 
3 0 

0 −n 

′ 
1 n 

′ 
1 

n 

′ 
2 0 −n 

′ 
2 

−n 

′ 
3 n 

′ 
3 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (9) 

where C 0 is a 6 × 6 compatibility matrix and a prime means conjugate transpose so that m 

′ 
j 
u k = 

〈
m j , u k 

〉
. Accordingly, a

periodic zero mode solves 

C 0 � = 0 , � = 

[ 

u 1 

u 2 

u 3 

] 

. (10) 

Hence, periodic zero modes are null vectors of matrix C 0 . By the rank-nullity theorem ( Birkhoff and MacLane, 1998 ), their

number is equal to Z = 6 − rank C 0 where 6 is the dimension of C 0 and rank C 0 is its rank. 

Translations by a vector U o are characterized by u 1 = u 2 = u 3 = U o ( Fig. 2 a). They take the form 

� = 

[ 

U o 

U o 

U o 

] 

= D U o , D = 

[ 

I 
I 
I 

] 

, (11) 

where I is the second-order identity tensor. These clearly satisfy C 0 � = 0 . Translations span two periodic zero modes. It is

not too hard to show that if m j � = −n j , for some j , then rank C 0 = 4 and Z = 2 . Such lattices will be called distorted : they

admit no other periodic zero modes besides translations (Appendix A). Otherwise, if m j = −n j , for all j , then rank C 0 = 3

and Z = 3 . Such lattices will be called regular . These admit one extra periodic zero mode given by the twisting motion 

� = 

[ 

x̄ 1 

x̄ 2 

x̄ 3 

] 

ϕ o ≡ T ϕ o . (12) 

Restricted to the nodes of one unit cell, twisting is a rotation whose center can be chosen arbitrarily. Here, the geometric

center “O ” is chosen as the center of rotation whereas ϕo is the angle of rotation ( Fig. 2 b). It is easy to check that T is indeed

a zero mode, i.e., that C 0 T = 0 . While doing so it is useful to verify first that x̄ j−1 − x̄ j+1 = a j m̄ j is orthogonal to both m j 

and n j , these two being parallel in regular lattices. 

In conclusion, the periodic zero modes of a regular Kagome lattice are given by the linear combination of translations

and a twisting motion ( Fig. 2 c) 

� = D U o + T ϕ o , (13) 

or equivalently by 

u j = U o + ϕ o ̄x j . (14) 

2.4. Floquet-Bloch zero modes 

Floquet-Bloch zero modes take the form 

u 

l,m,n 
j 

= u j exp 

(
i 
〈
q , x 

l,m,n 
〉)

(15) 

where q is a real wavenumber. Alternatively, with x l,m,n = lr 1 + m r 2 + n r 3 , we can write 

u 

l,m,n 
j 

= Q 

l 
1 Q 

m 

2 Q 

n 
3 u j , (16) 

with Q j ≡ e iq j and q j ≡ 〈 q, r j 〉 . In particular, the Q j are unitary complex numbers such that 

Q 1 Q 2 Q 3 = exp ( i 〈 q , r 1 + r 2 + r 3 〉 ) = 1 . (17) 

Elongations admit similar expressions 

y l,m,n 
j 

= Q 

l 
1 Q 

m 

2 Q 

n 
3 y j , z l,m,n 

j 
= Q 

l 
1 Q 

m 

2 Q 

n 
3 z j , (18)

and it is again convenient to introduce a compatibility matrix as in (9) but with C 0 replaced by 

C(q ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 −m 

′ 
1 m 

′ 
1 

m 

′ 
2 0 −m 

′ 
2 

−m 

′ 
3 m 

′ 
3 0 

0 −Q 1 n 

′ 
1 n 

′ 
1 

n 

′ 
2 0 −Q 2 n 

′ 
2 

−Q 3 n 

′ n 

′ 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (19) 
3 3 
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Fig. 3. Examples of regular (a) and distorted Kagome lattices (b-d). Blue solid lines correspond to pairs of colinear bonds (i.e., m j = −n j ) in the unit 

cell. Their zero frequency contours are depicted on (e-h); red solid lines correspond to actual zero modes; red dashed lines correspond to modes that have 

disappeared due to the alignment-breaking distortion. Examples of Floquet-Bloch zero modes acting on the regular lattice (a) are shown in (i-l): (i) periodic 

zero mode ( q = 0 ); (j-l) Floquet-Bloch zero modes with q ⊥ r j . (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then, Floquet-Bloch zero modes of wavenumber q exist if and only if the linear system 

C(q )� = 0 , � = 

[ 

u 1 

u 2 

u 3 

] 

, (20)

of six equations has a non-trivial solution. The first three equations are automatically satisfied by the ansatz 

u j = U o + ϕ o ̄x j , (21)

where U o and ϕo are the new unknowns. The remaining three equations become [ 

(1 − Q 1 ) n 

′ 
1 〈 n 1 , ̄x 3 − Q 1 ̄x 2 〉 

(1 − Q 2 ) n 

′ 
2 〈 n 2 , ̄x 1 − Q 2 ̄x 3 〉 

(1 − Q 3 ) n 

′ 
3 〈 n 3 , ̄x 2 − Q 3 ̄x 1 〉 

] [
U o 

ϕ o 

]
= 

[ 

0 

0 

0 

] 

(22)

and have a zero-determinant condition equivalent to ∏ 

j 

(1 − Q j ) 
∑ 

j 

〈
b j n j , ̄x j+1 

〉
+ 

∑ 

j 

(1 − Q j−1 )(1 − Q j+1 ) 
〈
b j n j , a j m̄ j 

〉
= 0 . (23)

From the above equation, it is clear that q = 0 , Q 1 = Q 2 = Q 3 = 1 provides systematic solutions. These are no other than the

periodic zero modes of the previous subsection. For q � = 0 , it can be verified that Q j = 1 (i.e., q ⊥ r j ) is a solution if and

only if m j and n j are colinear. No other solutions exist as long as the lattice is not “too distorted” (see Appendix B). 

It is then possible to draw the locus of real wavenumbers q for which Floquet-Bloch zero modes exist. Such a “zero-

frequency dispersion diagram” is composed of a number n of straight lines where n is the number of colinear pairs ( m j ,

n j ). The regular lattice ( Fig. 3 a) has three pairs of colinear bonds highlighted in blue; thus, its spectrum ( Fig. 3 e) shows

Floquet-Bloch zero modes in the three directions perpendicular to the three lattice vectors r j . Fig. 3 i shows the mode shape

of a periodic zero mode ( q = 0 ) and Fig. 3 j–l show mode shapes of zero modes with wavenumbers in the directions r̄ j ;

these mode shapes were previously obtained by Hutchinson and Fleck (2006) and are reproduced here for convenience.

Subsequently, distortions that break the alignment of one, two or three pairs of bonds gap one, two or three lines of zero

modes, respectively. The resulting lattices and spectra are depicted in Fig. 3 b-d and f-h. 
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Fig. 4. Illustration of a distortion inducing a regular-distorted phase transition (red arrows): The unmarked node belongs to the boundary of the unit cell 

and is displaced by the same vector as node 2 so as to maintain periodicity. Elevation w 1 is positive when the vector running from point O 1 to node 3 

is in the same direction as ē 1 . The elevations w j are the only components of the distortion that are relevant here. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Homogenization of Kagome lattices: the microtwist continuum 

3.1. Prelude: why Cauchy elasticity is not enough 

Having explored Kagome lattices from a purely geometric point of view, it is time to investigate their elastic behavior.

We are particularly concerned here with the homogenization limit, i.e., the limit of infinitesimal unit cells. The standard

theory of elasticity then permits us to model a Kagome lattice as a homogeneous Cauchy continuum where reigns a stress

distribution related to a strain field through Hooke’s law 

σ = C 

∗ : ∇ 

s 
U , (24) 

with C 

∗ being the homogenized fourth-order tensor of effective elastic moduli and ∇ 

s U being the symmetric part of the

displacement gradient ∇U . Interestingly, the overview of zero modes presented in the previous section helps to recognize

the limitations of Cauchy’s continuum. On one hand, the twisting zero mode in regular lattices produces zero macroscopic

strain ∇ 

s U (see, e.g., Fig. 3 i) and therefore cannot be accounted for through U or its gradients. Conversely, a Cauchy’s contin-

uum admits no zero modes unless C 

∗ was singular. By contrast, regular Kagome lattices admit a rich family of zero modes

and are known to exhibit a non-singular C 

∗. 

Extrapolating by continuity, we argue that Cauchy’s continuum will also be a poor model for weakly-distorted lattices,

i.e., lattices where bonds along m j and n j are close to being colinear. Such lattices necessitate a richer continuum than that

of Cauchy for their accurate modeling. In the remainder of this section, we find that continuum. 

3.2. Three perturbations 

Starting with a regular Kagome lattice, we introduce three perturbations. 

First, we induce a regular-distorted phase transition by perturbing the initial positions of the nodes so as to break the

alignment of any one of the three pairs ( m j , n j ). Letting (e j , ̄e j ) be an orthonormal basis colinear to (r j , ̄r j ) , a weakly-

distorted lattice is obtained and is characterized by 

m j = e j + 

w j 

a j 
ē j + O 

(
w j 

a j 

)2 

, n j = −e j + 

w j 

b j 
ē j + O 

(
w j 

b j 

)2 

, (25)

where the parameters w j control the geometric distortion and are illustrated on Fig. 4 . 

Second, we assume that the displacements u 

l,m,n 
j 

vary slowly with the unit cell indices ( l, m, n ). That is u 

l,m,n 
j 

= u j (x l,m,n )

where the u j = u j (x ) are now slowly varying fields of the space variable x . More importantly, the leading-order Taylor

expansions 

u 

l+1 ,m,n 
j 

− u 

l,m,n 
j 

= ∂ 1 u j , 

u 

l,m +1 ,n 
j 

− u 

l,m,n 
j 

= ∂ 2 u j , 

u 

l,m,n +1 
j 

− u 

l,m,n 
j 

= ∂ 3 u j , (26) 

hold with ∂ j = 

〈
r j , ∇ 

〉
being the differential with respect to x in direction r j . Then, the functions u j are slowly varying in

space if and only if ‖ ∂ j ‖ � 1, i.e., if and only if their spectrum is dominated by long wavelengths. 

Third, we assume that the displacements u 

l,m,n 
j 

change with respect to time at low or vanishing angular frequencies ω 

that satisfy ω 

√ 

max (m j ) �
√ 

min (α j , β j ) . 

Accordingly, in what follows, the behavior of Kagome lattices is investigated in the homogenization limit and, specifically,

in the critical regime ∥∥∂ j 
∥∥ ∼

√ 

max (m j ) 

min (α j , β j ) 
ω ∼

∣∣w j 

∣∣
min (a j , b j ) 

� 1 (27) 

where all three introduced perturbations are a priori of the same order of magnitude. 
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3.3. Asymptotic expansions 

We start by revisiting the equations of the previous section and replace them with their second-order asymptotic expan-

sions. For instance, injecting (25) and (26) back into (2) yields ⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

y 1 
y 2 
y 3 
z 1 
z 2 
z 3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= C 

[ 

u 1 

u 2 

u 3 

] 

= C�, C = C 0 + δC + δ2 C + . . . , (28)

where the elongations y j and z j , like the displacements u j , are all functions of the space variable x ; C is a differential

compatibility operator; C 0 is its restriction to periodic configurations over a regular lattice; and δC and δ2 C are its first-

order and second-order corrections. We have previously encountered C 0 in Eq. (9) ; here it specifies into 

C 0 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 −e ′ 1 e ′ 1 
e ′ 2 0 −e ′ 2 

−e ′ 3 e ′ 3 0 

0 e ′ 1 −e ′ 1 
−e ′ 2 0 e ′ 2 
e ′ 3 −e ′ 3 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (29)

As for the correction δC = δw 

C + δx C, it is composed of two terms, the first of which is due to the perturbation that induces

the regular-distorted phase transition, namely 

δw 

C = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 −w 1 ̄e 
′ 
1 /a 1 w 1 ̄e 

′ 
1 /a 1 

w 2 ̄e 
′ 
2 /a 2 0 −w 2 ̄e 

′ 
2 /a 2 

−w 3 ̄e 
′ 
3 /a 3 w 3 ̄e 

′ 
3 /a 3 0 

0 −w 1 ̄e 
′ 
1 /b 1 w 1 ̄e 

′ 
1 /b 1 

w 2 ̄e 
′ 
2 /b 2 0 −w 2 ̄e 

′ 
2 /b 2 

−w 3 ̄e 
′ 
3 /b 3 w 3 ̄e 

′ 
3 /b 3 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (30)

and the second of which is due to the fields being slowly varying in space, namely 

δx C = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 

0 0 0 

0 0 0 

0 e ′ 1 ∂ 1 0 

0 0 e ′ 2 ∂ 2 
e ′ 3 ∂ 3 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (31)

Lastly, the entries of the second-order correction δ2 C will not be calculated as they turn out to be of no use for our purposes.

Similarly, displacements can be Taylor-expanded: 

� = �0 + δ� + δ2 � + . . . , � = 

[ 

u 1 

u 2 

u 3 

] 

, (32)

where �0 gathers the leading-order displacements, δ� their first-order corrections and so on, and all are functions of x . As

for the motion equation, it reads 

−C ′ KC� + F = −ω 

2 M�, (33)

where K = diag ( α1 , α2 , α3 , β1 , β2 , β3 ) and M = diag ( m 1 I , m 2 I , m 3 I ) are the diagonal rigidity and mass matrices and where

C ′ is the adjoint operator of C obtained by transposing C and mapping ∂ j to −∂ j . As for F , it corresponds to body force and

is taken to be slowly varying in space and of the same order of magnitude as inertial forces. In the following, we derive an

equation that governs the leading-order displacements �0 thus interpreted as the macroscopic motion equation. But first,

the motion equation must be solved to leading and first orders. 

3.4. Leading and first order auxiliary problems 

Keeping only leading-order terms in the motion Eq. (33) yields 

−C ′ 0 KC 0 �0 = 0 . (34)

Therefore, �′ 
0 C 

′ 
0 KC 0 �0 = 0 and, by definiteness of K , C 0 �0 = 0 . We have seen in Section 2.3 that the solutions to this equa-

tion are translation and twisting motions so that there exist slowly varying vector and scalar fields, U = U (x ) and ϕ = ϕ(x ) ,

such that 

�0 = D U + T ϕ. (35)
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Then, keeping only the first-order terms entails 

−C ′ 0 KC 0 δ� + � = 0 , � = −C ′ 0 K(δw 

C + δx C)(D U + T ϕ) . (36)

Thus, δ� appears as a solution to a forced motion equation. Matrix C 0 being singular, the above equation admits solutions 

if and only if � is balanced in the sense of being orthogonal to all zero modes: 

D 

′ � = 0 , T ′ � = 0 . (37) 

Alternatively, � is balanced if and only if it belongs to the range of matrix C ′ 0 , which in turn is identical to the range of

matrix 

G = 

[
G 1 G 2 G 3 

]
, G 1 = 

[ 

0 

−e 1 
e 1 

] 

, G 2 = 

[ 

e 2 
0 

−e 2 

] 

, G 3 = 

[ −e 3 
e 3 
0 

] 

, (38) 

given that C ′ 0 = 

[
G −G 

]
. That is, � is a balanced loading if and only if it reads 

� = Gψ, ψ = 

[ 

ψ 1 

ψ 2 

ψ 3 

] 

, (39) 

where the ψ j are the generalized coordinates of � along the G j . In Eq. (36) , � is indeed balanced because it is pre-

multiplied by C ′ 
0 
. A straightforward calculation then shows that 

ψ = 

[ 

(γ β1 − α1 ) w 1 

(γ β2 − α2 ) w 2 

(γ β3 − α3 ) w 3 

] 

ϕ + 

1 

3 

[ 

β1 h 1 ∂ 1 
β2 h 2 ∂ 2 
β3 h 3 ∂ 3 

] 

ϕ + 

[ 

β1 〈 e 1 , ∂ 1 〉 
β2 〈 e 2 , ∂ 2 〉 
β3 〈 e 3 , ∂ 3 〉 

] 

U , (40) 

where γ = a j /b j is the j -independent similarity ratio and h j = 

〈
e j , a j−1 ̄e j−1 

〉
is the height of node j in the triangle whose

vertices are nodes 1, 2 and 3 previously called triangle �. 

Therefore, a solution δ� exists and is given by 

δ� = �ψ, � = 

[
�1 �2 �3 

]
, (41) 

where �j is a solution to 

−C ′ 0 KC 0 � j + G j = 0 . (42) 

The �j are straightforward to determine from the above equation, first by solving for KC 0 �j , then for C 0 �j and finally for

�j . Also, note that it is enough to calculate �1 since �2 and �3 can be deduced by permutation symmetry. Skipping these

steps, it comes that 

� = −1 

2 

⎡ 

⎣ 

0 

a 3 /h 2 
α2 + β2 

ē 3 
a 2 /h 3 
α3 + β3 

ē 2 
a 3 /h 1 
α1 + β1 

ē 3 0 

a 1 /h 3 
α3 + β3 

ē 1 
a 2 /h 1 
α1 + β1 

ē 2 
a 1 /h 2 
α2 + β2 

ē 1 0 

⎤ 

⎦ . (43) 

It is worth mentioning that the determined solution δ� is not unique and can be modified by addition of an arbitrary

correction DδU + T δϕ. However, this will have no influence on what follows. 

3.5. Macroscopic equations of motion 

Keeping the second-order terms in the motion equation yields 

−C ′ 0 KC 0 δ
2 � − C ′ 0 K(δw 

C + δx C) δ� − (δw 

C + δx C) ′ KC 0 δ�

−C ′ 0 Kδ2 C�0 − (δw 

C + δx C) ′ K(δw 

C + δx C)�0 + F = −ω 

2 M�0 . (44) 

Thus, δ2 �, just like δ� before, is a solution to a forced motion equation and exists if and only if the orthogonality condi-

tions (37) are enforced. These are derived by multiplying Eq. (44) by D 

′ and by T ′ and read 

−D 

′ (δx C) ′ KC 0 δ� − D 

′ (δx C) ′ K(δw 

C + δx C)�0 + D 

′ F = −ω 

2 D 

′ M�0 , (45)

and 

−T ′ (δw 

C + δx C) ′ KC 0 δ� − T ′ (δw 

C + δx C) ′ K(δw 

C + δx C)�0 + T ′ F = −ω 

2 T ′ M�0 . (46)

Therein, the unknown term C ′ 
0 
KC 0 δ

2 � vanishes as it is pre-multiplied by C ′ 
0 
. Thanks to the expression of δ� given by

Eqs. (40) and (41) , we see that the above two equations involve the leading-order displacements spanned by U and ϕ
and the applied body force F , exclusively. Accordingly, they can be interpreted as a pair of macroscopic motion equations

governing the macroscopic DOFs U and ϕ. Next, we write these equations in a form more suitable for interpretation, extract

appropriate measures of strain and stress and reveal the constitutive law that relates them. 
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3.6. Microtwist continuum 

The quantities involved in (45) and (46) can be fully evaluated simply by injecting therein the derived expressions (11),

(12), (29), (30), (31), (40) and (43) . As a result, the macroscopic motion equations can be recast into the form 

−ω 

2 (ρU + ρd̄ ϕ) = F + ∇ ·
(
C : ∇ 

s 
U + B · ∇ ϕ + M ϕ 

)
, 

−ω 

2 (ρ
〈
d̄ , U 

〉
+ ηϕ) = τ + ∇ ·

(
B : ∇ 

s 
U + D · ∇ ϕ + A ϕ 

)
−M : ∇ 

s 
U − A · ∇ ϕ − Lϕ, (47)

where ∇ 

s U is the symmetric part of the macroscopic displacement gradient, ∇ϕ is the twisting gradient, the operators

· and : symbolize simple and double contraction of tensors and ∇ · is the divergence operator. 

Vector d = 

∑ 

j m j x j / 
∑ 

j m j is the position vector of the center of mass of triangle � with respect to its geometric center

and ρ and η are mass density and moment of inertia density 

ρ = 

γ 2 

ah (1 + γ ) 2 

∑ 

j 

m j , η = 

γ 2 

ah (1 + γ ) 2 

∑ 

j 

m j 

∥∥x j 

∥∥2 
, (48)

where ah /2 ≡ a j h j /2 is the area of triangle � and ah (1 + γ ) 2 /γ 2 is the area of a unit cell and both are independent of j . 

The vector-scalar pair ( F , τ ) is the resultant force-torque acting on a unit cell per unit cell area with respect to the

geometric center of triangle �. Its components read 

F = 

γ 2 

ah (1 + γ ) 2 

∑ 

j 

f j , τ = 

γ 2 

ah (1 + γ ) 2 

∑ 

j 

〈
x̄ j , f j 

〉
. (49)

The involved effective tensors are given by 

C = 

∑ 

j 

a j 

h j 

k j e j j j j , B = 

1 

3 

∑ 

j 

a j k j e j j j , M = γ
∑ 

j 

w j 

h j 

k j e j j , 

D = 

ah 

9 

∑ 

j 

k j e j j , A = 

γ

3 

∑ 

j 

w j k j e j , L = 

γ 2 

ah 

∑ 

j 

w 

2 
j k j , (50)

where e jjjj , e jjj and e jj are the fourth, third and second tensorial powers of e j respectively, and k j = α j β j / (α j + β j ) . Accord-

ingly, the above effective tensors are completely symmetric tensors of order four ( C ), three ( B ), two ( M, D ), one ( A ) and zero

( L ). 

Alternatively, the macroscopic motion equations can be written as the balance equations 

−ω 

2 (ρU + ρd̄ ϕ) = F + ∇ · σ, −ω 

2 (ρ
〈
d̄ , U 

〉
+ ηϕ) = τ + ∇ · ξ + s, (51)

where σ, ξ and s are second, first and zero-order tensorial stress measures related to the strain measures ∇ 

s U, ∇ϕ and ϕ
through the macroscopic constitutive law [ 

σ
ξ
−s 

] 

= 

[ 

C B M 

B D A 

M A L 

] [ ∇ 

s 
U 

∇ ϕ 

ϕ 

] 

. (52)

With the help of the divergence theorem, the motion equations can further be integrated over any domain � with

boundary ∂� and outward unit normal N to yield Euler’s laws 

−ω 

2 

∫ 
�

(
ρU + ρd̄ ϕ 

)
= 

∫ 
�

F + 

∫ 
∂�

σ · N , 

−ω 

2 

∫ 
�

(
ρ
〈
d̄ , U 

〉
+ ηϕ 

)
= 

∫ 
�

τ + 

∫ 
∂�

〈
ξ, N 

〉
+ 

∫ 
�

s. (53)

Knowing that ( F , τ ) is the resultant force-torque, the above equations readily provide an interpretation of the stress mea-

sures: σ is Cauchy’s stress whereby σ · N yields the stress vector applied to a length element of normal N; ξ is couple

stress whereby 〈 ξ, N 〉 yields the torque per unit length applied to a length element of normal N ; and s is a hyperstress

counteracting the external body torque τ . 

We thus complete the description of the behavior of a general regular or weakly-distorted Kagome lattice, in the ho-

mogenization limit, as an enriched continuum with an extra DOF and additional measures of strain, stress and inertia. This

enriched continuum is baptized the microtwist continuum . 

3.7. Discussion 

In conclusion of this section, several points are worth stressing. We do so in the following somewhat lengthy discussion.
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1. As it has more DOFs than dimensions, the microtwist medium qualifies as an enriched continuum in the sense of general-

ized continua ( Eringen, 1999; Mindlin, 1964 ). The microtwist medium can be understood as a particular Cosserat medium

where the microrotation DOF ϕ 

mr and infinitesimal rotation ∇ × U /2 only appear in the combination ϕ = ϕ 

mr − ∇ × U / 2 .

Such a Cosserat medium would be unusual however as it would involve the second gradient of U , specifically ∇( ∇ × U ),

through ∇ϕ. This brings unnecessary formal complications; it seems then that Kagome lattices are more naturally un-

derstood as their own microtwist media. Microtwist media are also isomorphic to a subclass of Eringen’s micromorphic

media where microdeformation is restricted to a one dimensional space. Some refer to such a medium as a microdilata-

tion medium; see, e.g., Forest and Sievert (2006) . 

2. In the preceding derivations, nodes were assumed to behave like perfect hinges. The consequence is that variations of

angles between the bonds meeting at a given node cost no elastic energy at all. It could be of interest however to inspect

the mechanics of Kagome lattices with elastic hinges as they are expected to be better models of real structures. Taking

the influence of elasticity in the hinges turns out to be remarkably simple so long as the hinges are soft. Indeed, in that

case, it is enough to change the expression of the effective parameter L into 

L = κ + 

γ 2 

ah 

∑ 

j 

w 

2 
j k j (54) 

where κ is an effective torsional spring constant function of geometry and of the elasticity moduli of the hinges. A proof

is outlined in Appendix C. 

3. The quadratic form of strain energy density ε is 

ε = 

σ : ∇ 

s 
U + ξ · ∇ ϕ − sϕ 

2 

, (55) 

where stresses are linear combinations of strains following the constitutive law of the microtwist continuum. Skipping

calculations, its expression can be recast into 

ε = 

∑ 

j 

k j 

2 ah 

(
a j e j j : ∇ 

s 
U + 

ah 

3 

e j · ∇ ϕ + γ w j ϕ 

)2 

+ 

κ

2 

ϕ 

2 (56) 

where it is clear that it is non-negative. Definiteness however completely relies on the elastic constants k j and κ be-

ing non-null. In particular, when the hinges are perfect ( κ = 0 ), strain energy is semi-definite and therefore allows for

microstructural zero modes to manifest on the macroscopic scale. 

4. Microtwist elasticity and Cauchy’s elasticty 

In this section, we draw a quantitative comparison between Cauchy’s and microtwist elasticity in the context of low-

frequency wave propagation and dispersion. But first, the governing equations of the relevant effective continua are exem-

plified for a family of equilateral Kagome lattices. 

4.1. Model reduction to Cauchy’s continuum 

Hutchinson and Fleck (2006) , among others, developed a homogenization theory for a few Kagome lattices and other

periodic trusses based on a kinematic hypothesis known as the Cauchy-Born hypothesis. It states that the displacements are

the sum of one linear and one periodic field 

u 

l,m,n 
j 

= ε · x 

l,m,n 
j 

+ u j , (57) 

the linear part being the result of an imposed uniform macroscopic deformation ε . In doing so, they neglected 

3 the contri-

bution of the twisting gradient ∇ϕ to strain energy as well as the presence of any dynamics. Our model reduces to theirs

when these approximations are implemented. 

As a matter of fact, strain energy density ε, with twisting gradients neglected, simplifies into 

ε∗ = 

1 

2 

∇ 

s 
U : C : ∇ 

s 
U + M : ∇ 

s 
U ϕ + 

1 

2 

Lϕ 

2 . (58)

Hence, the static Lagrangian 

∫ 
� ε∗ − 〈 F , U 〉 of a domain � in the absence of body torques τ is minimal for 

ϕ = −M : ∇ 

s 
U 

L 
, L � = 0 . (59) 

Thus, under these assumptions, ϕ is no longer a free variable (i.e., a DOF) and is dictated pointwise by the value of the

macroscopic strain ∇ 

s U . Substituting for ϕ, we obtain a reduced strain energy density in the form 

ε∗ = 

1 ∇ 

s 
U : C 

∗ : ∇ 

s 
U , C 

∗ = C − 1 

M �M , (60)

2 L 

3 We stress that Hutchinson and Fleck (2006) were aware of the limitations of their model; see the first footnote of their paper. 
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Fig. 5. Two equilateral Kagome lattices and their dispersion diagrams: (a) a regular lattice; (b) a pre-twisted (distorted) lattice; (c, d) their respective 

dispersion diagrams; (e, f) their respective isofrequency contours: left, middle and right correspond to the first, second and third dispersion surfaces. The 

used numerical values are: a j = b j = 1 and α j = β j = 1 ; w j = 0 for (a); and w j /a j ≈ −4% for (b). 

 

 

 

 

 

 

 

 

 

with a reduced Hooke’s law σ = C 

∗ : ∇ 

s 
U . Note that for Kagome lattices with L = 0 , we also have M = 0 by Eq. (50) . In

that case, ε∗ becomes independent of ϕ and we readily obtain C 

∗ = C . These expressions of C 

∗ are in agreement with, and

generalize, the results of Hutchinson and Fleck (2006) to arbitrary regular and weakly-distorted Kagome lattices. 

Using the reduced Hooke’s law is appealing as it is significantly simpler than the microtwist constitutive law. Nonethe-

less, neglecting the twisting gradient ∇ϕ cannot be justified except in the presence of static uniform fields. Taking the

contributions of twisting gradients to strain energy into account, specifically through the effective tensors ( B, D, A ), will in

fact greatly improve the quality of the predictions of the effective medium theory; various quantitative demonstrations are

suggested in the remainder of the paper. 

4.2. Example: equilateral lattices 

We readily exemplify the equations of microtwist and Cauchy’s elasticity in the case of Kagome lattices whose all edges

are equal in length. We call such lattices equilateral ; see Fig. 5 a, b. We further suppose that equilateral lattices possess

perfect hinges, j -independent parameters and a similarity ratio γ = 1 . Such lattices are therefore invariant by rotations of
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order 3. Consequently, their effective tensors C, D and M are isotropic. 4 Specifically, they are given by 

C : ∇ 

s 
U = μ(2 ∇ 

s 
U + tr ( ∇ 

s 
U ) I ) , D = 

a 2 

3 

μI , M = 4 

w 

a 
μI , (61)

with μ = 

√ 

3 k/ 4 . In addition, L = 8 w 

2 μ/a 2 whereas vector A and the inertial coupling d̄ vanish. As for mass and moment of

inertia densities, they simplify into 

ρ = 

√ 

3 m 

2 a 2 
, η = 

m 

2 

√ 

3 

. (62) 

Last, the third-order effective tensor B is anisotropic. Its components depend on the chosen basis. In a basis ( e x , e y ) aligned

with (e 1 , ̄e 1 ) , its components take the form 

B xxx = −B xyy = −B yxy = −B yyx = 

a √ 

3 

μ, B yxx = B xyx = B xxy = B yyy = 0 . (63)

These results are in agreement with the strain energy density postulated by Sun et al. (2012) . 

By the same logic as above, the elasticity tensor C 

∗ of the reduced Hooke’s law is isotropic. Its expression depends on

whether the lattice is distorted ( w � = 0) or regular (w = 0) . For a distorted lattice, application of Eq. (60) leads to 

C 

∗ : ∇ 

s 
U = μ(2 ∇ 

s 
U − tr ( ∇ 

s 
U ) I ) , (64) 

with a Young’s modulus E = 0 and a Poisson’s coefficient ν = −1 . For a regular lattice, C 

∗ = C exhibits a Young’s modulus

E = 8 μ/ 3 and a Poisson’s coefficient ν = 1 / 3 ; see also Lubensky et al. (2015) . 

Last, with these expressions, the motion equations of the microtwist continuum can be fully expanded into 

−ω 

2 ρ

μ
U x = 3 U x,xx + 2 U y,xy + U x,yy + 

a √ 

3 

(ϕ ,xx − ϕ ,yy ) + 4 

w 

a 
ϕ ,x , 

−ω 

2 ρ

μ
U y = 3 U y,yy + 2 U x,xy + U y,xx − 2 a √ 

3 

ϕ ,xy + 4 

w 

a 
ϕ ,y , 

−ω 

2 η

μ
ϕ = 

a √ 

3 

(U x,xx − 2 U y,xy − U x,yy ) + 

a 2 

3 

(ϕ ,xx + ϕ ,yy ) 

−4 

w 

a 
(U x,x + U y,y ) − 8 

w 

2 

a 2 
ϕ, (65) 

where a comma denotes a partial derivative with respect to the relevant space coordinates. This set of equations can be

solved by prescribing appropriate boundary conditions where either U , ϕ, σ · N or 〈 ξ, N 〉 , or a combination thereof is given,

using the finite element method for instance. 

4.3. Dispersion diagrams 

Free harmonic plane waves propagated through the bulk of a Kagome lattice exist at specific frequencies ω and

wavenumbers q solution to the dispersion relation 

det 
(
C (q ) ′ KC (q ) − ω 

2 M 

)
= 0 . (66) 

The Kagome lattice having six DOFs per unit cell, there exists six solution frequencies ω = ω d (q ) , d = 1 , 2 , . . . 6 , for any

given wavenumber q . The microtwist continuum, having three DOFs per unit cell, will be able, at best, to account for the

lowest three of them ω = ˜ ω d (q ) , d = 1 , 2 , 3 . These frequencies are obtained by injecting 

U (x , t) = U o exp (i 〈 q , x 〉 ) , ϕ(x , t) = ϕ o exp (i 〈 q , x 〉 ) , (67)

in Eq. (47) under zero loading and solving the resulting dispersion relation 

det 

([
q · C · q q · B · q − i q · M 

(q · B · q − i q · M ) ′ q · D · q + L 

]
− ω 

2 ρ

[
I d̄ 

d̄ 

′ η/ρ

])
= 0 . (68) 

Hereafter we draw a comparison between the two, discrete and microtwist, models. For reference, we also include the

dispersion diagrams of the effective Cauchy continuum. 

Thus let us consider the two previously introduced equilateral Kagome lattices of Fig. 5 a and b. Plots (c) and (d) of their

dispersion diagrams show satisfactory agreement between the discrete and microtwist models up to frequencies comparable

to the cutoff frequencies of the three lowest dispersion branches and that for small to medium wavenumbers. By contrast,

the Cauchy model systematically misses one dispersion branch, namely the one corresponding to the twisting motion, and in

some directions, e.g., �M direction, significantly underestimates the shear acoustic branch. These observations hold for the

isofrequency contours shown on plots (e) and (f). Note again how the Cauchy model completely omits the first dispersion
4 In 2D, tensors of order 2 and 4 are isotropic, i.e., invariant by proper plane rotations, as soon as they are invariant by rotations of order 3. 
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surface (left); in particular, it exhibits no traces of the zero modes of the regular lattice. The Cauchy model does well

in particular highly symmetric directions over the second dispersion surface (middle) and is satisfactory overall for the

third surface (right). However, the Cauchy model fails to describe the directional, i.e., anisotropic, behavior of the second

dispersion surface. By contrast, the microtwist model appears consistently accurate across all three surfaces for wavelengths

as small as two unit cells. In conclusion of this section, we highlight that by correcting Cauchy’s model, microtwist elasticity

should help improve the accuracy of ultrasound-based evaluation techniques for lattice-based materials whereby the elastic

properties are inferred from wave speed measurements. 

5. Elastic and topological polarization 

5.1. Parity symmetry in microtwist elasticity 

Consider a homogeneous centrosymmetric domain �, i.e., such that x ∈ � implies −x ∈ �. Suppose � obeys Cauchy’s

theory of elasticity and let U ( x ) be a displacement field in static equilibrium so that 

∇ · (C 

∗ : ∇ 

s 
U (x )) = 0 . (69)

Now let V ( x ) be another displacement field deduced from U ( x ) by the space inversion V (x ) = U (−x ) . Then, thanks to the

chain rule ∇ 

s 
V (x ) = −∇ 

s 
U (−x ) , it is straightforward to see that V ( x ) is in static equilibrium as well: 

∇ · (C 

∗ : ∇ 

s 
V (x )) = 0 . (70)

This symmetry is characteristic of Cauchy’s theory of elasticity; it states that the space of solutions is invariant under the

space inversion x �→ −x . We will refer to it as Parity (P) symmetry. 

Formally, P-symmetry is equivalent to the strain energy density ε being an even function of the gradient operator ∇. That

is, the formal substitution ∇ �→ −∇ induced by the chain rule leaves the strain energy density as is. While this property

holds for Cauchy’s strain energy density ε∗ of Eq. (60) , it fails, in general, for the microtwist strain energy density ε of

Eq. (56) . For reference, we have 

ε( ∇ ) = 

∑ 

j 

k j 

2 ah 

(
a j e j j : ∇ 

s 
U + 

ah 

3 

e j · ∇ ϕ + γ w j ϕ 

)2 

+ 

κ

2 

ϕ 

2 , 

ε(−∇ ) = 

∑ 

j 

k j 

2 ah 

(
a j e j j : ∇ 

s 
U + 

ah 

3 

e j · ∇ ϕ − γ w j ϕ 

)2 

+ 

κ

2 

ϕ 

2 . (71)

Therefore, in the microtwist theory, a Kagome lattice is P-symmetric if and only if all w j vanish, i.e., if and only if the

lattice is regular. Conversely, all distorted lattices, i.e., with at least one non-zero w j , are P-asymmetric. We will refer to

P-asymmetric lattices as polarized . 

Intuitively, in a polarized lattice, gradients will prefer to point towards specific directions (e.g., left or right, up or down).

Indeed, flipping the sign of the gradients can drastically change the strain energy density ε. By contrast, P-symmetric lat-

tices are only sensitive to the magnitude of the gradients and not to the direction in which the fields grow or decay. It is

paramount to stress here that P-symmetry is different from and independent of material symmetry and the related notions

of isotropy or anisotropy. For instance, we have seen that regular equilateral Kagome lattices exhibit a non-zero third order

effective constitutive tensor B which breaks the material centrosymmetry of the constitutive law. Nonetheless, as we have

just pointed out, regular lattices are P-symmetric. 

In fact, observe how the rule ∇ �→ −∇ acts in the same manner as the rule w j �→ −w j on the strain energy density

ε. 5 This means that the effective constitutive tensors responsible for P-asymmetry are the ones that are odd functions of

the w j . We conclude that the tensors A and M , and not B , are at the origin of macroscopic polarization effects in Kagome

lattices. Moreover, tensor M is alone responsible for polarization effects in the bulk. Indeed, in ε, tensor A only appears in

the combination ∇ · (A ϕ) − A · ∇ ϕ which vanishes identically. In any case however, both M and A contribute to polarization

near interfaces or edges since they would be involved in writing the corresponding continuity and boundary conditions

weighing on σ and ξ. 

In the remainder of this section, we explore how polarization manifests in the biased way in which zero modes localize

near boundaries and investigate the influence this bias has on the elastic response. 

5.2. The zero modes of the microtwist continuum 

Zero modes, over a continuum, can be reasonably defined as configurations producing zero stress measures: 

σ = 0 , ξ = 0 , s = 0 . (72)
5 This is similar to how in certain physical systems, P-symmetry breaks but CP-symmetry survives where “C” stands for charge conjugation. 
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Fig. 6. Comparison of fundamental near-zero mode prediction from lattice model and microtwist model for three different lattices: (a) lattice geometry 

and imposed boundary conditions; (b-d) mode shape for the discrete (top) and the continuum (bottom) models resolved into the three components U x 
(left), U y (middle) and ϕ (right). The distortion parameters are: (b) w j = 0 ; (c) w j /a j = −4% ; (d) w 1 / a 1 ≈ 1.7%, w 2 /a 2 ≈ −0 . 87% and w 3 / a 3 ≈ 4.36%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equivalently, zero modes produce zero strain energy: ε = 0 . Thus, in light of expression (56) , zero modes only exist in the

absence of elasticity in the hinges (i.e., κ = 0 ) and, in that case, are solutions to 

a j e j j : ∇ 

s 
U + 

ah 

3 

e j · ∇ ϕ + γ w j ϕ = 0 , j = 1 , 2 , 3 . (73)

The above system of linear partial differential equations provides a continuum characterization of the zero modes of regular

and weakly-distorted Kagome lattices. As a sanity check, note that this characterization is independent of the elastic moduli

k j , zero modes being representative of configurations that do not stretch any bonds. 

It is possible to numerically solve the above system under appropriate boundary conditions. Alternatively, it is more

convenient to obtain approximate zero modes by minimizing strain energy in the presence of a small residual elastic energy

stored in the hinges (i.e., for 0 < κ ~ 0). Thus, we consider a rectangular sample freely vibrating under Dirichlet left and

right boundary conditions and free top and bottom boundaries as shown on Fig. 6 a. We then calculate the eigenmode of

lowest energy for both the discrete and continuum models. This fundamental eigenmode becomes a zero mode in the limit

κ → 0. Three components corresponding to U x , U y and ϕ are extracted from the eigenmode’s shape and are plotted as

normalized color maps on Fig. 6 b-d for three different lattices. In all of these cases, the microtwist continuum predicts well

the mode shape of the approximate zero mode. 

It is of interest here to highlight how the distortion parameters w j influence the space distribution of zero modes. On

plot (b), the w j are all null, and the zero mode reaches deep into the bulk of the sample. This is consistent with the fact

that regular lattices admit bulk Floquet-Bloch zero modes. On plot (c), the w j are all of the same sign, namely positive; the

zero mode is localized near edges and decays exponentially towards the bulk. Again, this is consistent with the fact that

geometric distortions gap Floquet-Bloch zero modes at non-zero wavenumbers. Last, on plot (d), where w j � = 0 but not all

of the same sign, namely w 1 , w 3 > 0 and w 2 < 0, the zero mode localizes again near edges but does so in an asymmetric

fashion: the zero mode appears to favor the top edge over the bottom one. This phenomenon of polarization is a symptom

of the loss of P-symmetry; it is ubiquitous in distorted Kagome lattices but is most pronounced in those lattices qualified as

“topological” by Kane and Lubensky (2014) . Hereafter, we analyze in more detail the polarized distribution of zero modes in

distorted Kagome lattices as well as the notions of “topology” and “topological polarization”. 
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Fig. 7. Polar plots of the decay factor r = r(e y ) : (a) Geometry of a finite slice of an infinite lattice; (b) Generic plot of r for branch k of Eq. (80) ; dashed 

(resp. solid) lines correspond to r > 1 (resp. r < 1); two antipodal points correspond to two opposite surfaces; sectors are color-coded to indicate when a 

surface exhibits an excess or a deficit of zero modes compared to the opposite surface. (c, d) Generic plots of r for when all branches are superposed; the 

top shows example unit cells with exaggerated distortions and relative orientation of vectors e j and sgn (w j ) e j = ±e j ; the signs correspond to the signs 

of the w j . The bottom shows the polar plots. In the trivial configuration (c), sectors with an excess of zero modes are disconnected; that is, P = 0 . In the 

topological configuration (d), these sectors are adjacent with all corresponding e y making acute angles with P = e 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. Polarization effects in the distribution of zero modes 

Consider a distorted lattice such that all w j are non-zero . Therein, zero modes of a non-zero wavenumber q are necessarily

localized. Suppose then that in the ( x, y )-plane of basis ( e x , e y ), the lattice occupies a band −Y < y < 0 of a finite width Y and

of infinite length in the x -direction with e y inclined with respect to e 1 by some angle ζ ( Fig. 7 a). A zero mode localized near

the top boundary y = 0 exhibits a wavenumber q = q x e x + q y e y where q x is real and non-zero and q y = q R + iq I is complex

with real part q R and a negative non-zero imaginary part q I . Hence, the zero mode maintains a constant amplitude in the

x -direction but decays exponentially in the y -direction. Conversely, a mode localized near the bottom boundary y = −Y has

q I > 0. 

Given q x , component q y can be determined by solving a complex dispersion relation. To find it, specify the field

Eqs. (73) to a plane wave of amplitude ( U o , ϕo ). Eqs. (73) then yield 

ia j 
〈
e j , q 

〉〈
e j , U o 

〉
+ 

(
i 
ah 

3 

〈
e j , q 

〉
+ γ w j 

)
ϕ o = 0 , j = 1 , 2 , 3 . (74)

Non-trivial solutions exist when the zero-determinant condition 

det 

⎡ 

⎣ 

ia 1 〈 e 1 , q 〉 e ′ 1 i ah 
3 〈 e 1 , q 〉 + γ w 1 

ia 2 〈 e 2 , q 〉 e ′ 2 i ah 
3 〈 e 2 , q 〉 + γ w 2 

ia 3 〈 e 3 , q 〉 e ′ 3 i ah 
3 〈 e 3 , q 〉 + γ w 3 

⎤ 

⎦ = 0 (75)

is met. Equivalently, q y is solution to the complex dispersion relation 

ah 

∏ 

j 

〈
e j , q 

〉
− iγ

∑ 

j 

w j 

∏ 

k � = j 
〈 e k , q 〉 = 0 . (76)

Generally speaking, the above equation is polynomial of degree 3 and therefore admits three complex solutions. A key

observation here is that an odd number of zero modes, namely 3, cannot be evenly split between the top and bottom

boundaries. Thus, the top or the bottom must exhibit a relative excess or deficit in the number of zero modes they host.



18 H. Nassar, H. Chen and G. Huang / Journal of the Mechanics and Physics of Solids 144 (2020) 104107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In other words, if the top boundary hosts Z zero modes out of the available three, then the bottom boundary hosts the

remaining 3 − Z, and Z cannot equal 3 − Z. This is, at its simplest, where polarization effects come from. 

5.4. Trivial and topological polarization 

From now on, we will refer to the boundary y = 0 as the surface of normal e y . We equally refer to the opposite sur-

face y = −Y by its outward normal −e y . It is of interest to determine for which normal vectors e y , will the surface host a

relative excess or deficit in zero modes compared to the opposite surface. To do so, we look for particularly simple solu-

tions to (76) such that q is dominantly imaginary, i.e., highly localized in the y -direction in comparison to its oscillatory

components in the x - and y -directions (i.e., q I � q R , q x ). In that case, to leading order, q ~ iq I e y implies 

−iahq 3 I 

∏ 

j 

〈
e j , e y 

〉
+ iq 2 I γ

∑ 

j 

w j 

∏ 

k � = j 
〈 e k , e y 〉 = 0 , (77) 

and 

q I = 

γ

ah 

∑ 

j 

w j 〈
e j , e y 

〉 . (78) 

The above solution is only accurate if consistent with the premise of high localization, i.e., only in the vicinity of normal

directions such that 〈
e j , e y 

〉
= 0 (79) 

for some j = k . Accordingly, the particular solution further simplifies into 

q I = 

γ

ah 

w k 

〈 e k , e y 〉 . (80) 

It is insightful to vary e y around the unit circle and draw a generic polar plot r = r(e y ) of the decay factor r = exp ( q I /q x ) ,

where q x , taken positive, is used as a normalization factor; see Fig. 7 b. Factor r quantifies for each surface of normal e y , how

fast the zero mode’s amplitude decays in the y -direction taking the wavelength in the x -direction as a reference. Thanks

to the derived particular solutions, we know that r approaches 0 in directions e y that are close to ±ē k but make an obtuse

angle with sgn( w k ) e k . By contrast, r approaches + ∞ in directions e y that are close to ±ē k but make an acute angle with

sgn( w k ) e k . Between these extremes, r has a continuous profile that never reaches 1. Indeed, r = 1 corresponds to a zero

mode with q real and non-zero that do not exist when all distortion parameters w j are non-zero. 

There exists of course one such branch for each k exemplified on Fig. 7 b. Combining the various branches for k = 1 , 2 , 3 ,

it is possible to count the number of zero modes Z hosted by a surface of normal e y : it is equal to the number of branches

such that r < 1 in direction e y . When Z ≥ 2, the surface exhibits an excess of zero modes compared to the opposite surface;

when Z ≤ 1, the surface exhibits a deficit of zero modes compared to the opposite surface. Then, two qualitatively different

configurations arise and are depicted on Fig. 7 c and d. In both configurations, the normal vectors e y to surfaces in possession

of an excess of zero modes span three angular sectors with a total angle equal to π . In the first configuration (plot c) these

sectors are disconnected; this occurs when the w j are all of the same sign. We refer to such lattices as trivially polarized . In

the second configuration (plot d), said sectors are adjacent; this occurs when the w j are not all of the same sign. We refer

to these lattices as topologically polarized . 

While either way the lattice is polarized, topologically polarized lattices are expected to exhibit stronger polarization

effects. Indeed, in such lattices, it is possible to find a unitary polarization vector P such that 〈 e y , P 〉 > 0 if and only if the

surface of normal e y exhibits an excess of zero modes relative to the opposite surface of normal −e y . In other words, in

topologically polarized lattices, there exists a vector P which systematically points 6 towards the side of a lattice with the

most zero modes localized near it; this vector is readily visible on Fig. 7 d. In trivially polarized lattices, such a vector P

cannot be defined; in that case P is by default set to 0 . 

Polarization P , be it zero or not, is an example of a “topological invariant”, i.e., a quantity that is robust against small and

continuous perturbations. For instance, P is independent of the real component q x . It is also independent of the particular

geometric and constitutive parameters of the underlying lattice. Moreover, it only depends on the distortions w j through

their signs. As a matter of fact, should w k have an opposite sign to the other two w j , then P = −sgn (w k ) e k . Hence, for P to

change values, some w j has to change signs. However, given that the w j are initially non-zero, small-enough perturbations

cannot change their signs. 

The above discussion justifies why lattices with P � = 0 have been qualified as “topologically polarized”. On the other hand,

lattices with P = 0 are “topologically non-polarized”; yet, they are polarized in the sense that they are P-asymmetric. Hence,

we preferred to refer to them as “trivially polarized”. Last, the excluded lattices with some w j = 0 are in a critical state

such that any perturbation, however small, can lead to a trivially or a topologically polarized state depending on the sign of

w j post-perturbation. Thus, polarization effects in such lattices are very sensitive to perturbations; they do not feature any

topological qualities. 
6 In the sense that it makes an acute angle with the outward normal. 
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Fig. 8. Indentation tests simulated for free surfaces of different inclinations ζ : (a) boundary conditions; (b) polar plot of the relative surface stiffness; 

the crosses (resp. solid line) correspond to the continuum (resp. discrete) model. Configuration (a) corresponds to ζ = π/ 2 . Distortion parameters are 

w 1 / a 1 ≈ 1.7%, w 2 /a 2 ≈ −0 . 87% and w 3 / a 3 ≈ 4.36%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that this macroscopic notion of topological polarization is only valid in the limit of small distortions w j . For large

enough w j , zero modes localize over thin boundary layers and can no longer be captured using the present continuum

theory, not in its current form at least. Based on a study of the discrete lattice, Kane and Lubensky (2014) introduced and

interpreted a topological polarization vector P 

KL which similarly serves to pinpoint free surfaces with an excess of zero

modes. Their analysis led to the elegant formula 

P 

KL = −1 

2 

∑ 

k 

sgn (w k ) r k . (81)

Retrieving P 

KL on a macroscopic level was a principal motivation behind the present work. Indeed, it is straightforward to

check that P 

KL and P are colinear. That being said, it is important to stress that P 

KL and P do not count the same zero

modes. Specifically, the construction of P is based on counting macroscopic zero modes, i.e., those zero modes which decay

or grow slow enough across many unit cells so as to survive a micro-to-macro scale transition. Vector P 

KL on the other hand

takes into account all zero modes however localized. 

5.5. Indentation tests 

Asymmetric distributions of zero modes cause a polarized elastic response. Here, we investigate the polarized elastic

response of a topologically polarized lattice and assess whether the microtwist theory is capable of accurately reproducing

that response on a macroscopic level. 

Consider a rectangular sample of a topologically polarized lattice where the top and bottom edges are free and the left

and right edges are constrained. Like before, we let e y be the outward unit normal along the top edge and call ζ the angle it

makes with e 1 ; vector e x is aligned with the free edge. For angles ζ sweeping the range [0, 2 π ), we apply an outward force

F at the midpoint of the top edge and calculate, using FEA, the displacement at the same point where the force is applied

( Fig. 8 a). The ratio of the force to the y -displacement defines a surface stiffness S ( ζ ); the polar plot r(ζ ) = S(ζ ) /S(ζ + π)

compares the stiffnesses of the top and bottom edges and allows to gauge how polarized the elastic response is: for a given

inclination ζ , a relative stiffness r > 1 means that the top surface is stiffer than the bottom surface. A similar plot is made

using the microtwist continuum. The two plots match satisfyingly ( Fig. 8 b). 

For this particular example, P = e 2 since w 2 is negative whereas w 1 and w 3 are positive. Thus, zero modes overpopulate

edges where the outward unit normal forms an acute angle with P . These correspond to angles ζ between 30 ◦ and 210 ◦,

approximately. For all of these angles, the relative surface stiffness is lower than 1 signaling a relative softening of these

edges. Maximum softening is reached in the direction of P , approximately. It is worth noting here, that in order to guarantee

the well-posedness of the indentation problem, simulations are performed in the presence of a small residual elasticity in

the hinges 0 < κ ~ 0. 

6. Conclusion 

In this paper, we developed a theory of elasticity, called microtwist elasticity, that can capture the zero modes and

topological polarization of Kagome lattices on a macroscopic scale. Performance of the proposed theory is validated against
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the discrete model in a number of problems including determining the P-asymmetric distribution of zero modes, calculating

the dispersion relations and quantitatively predicting the polarized indentation response of finite samples. The theory also

permits to establish a classification of isostatic Kagome lattices function of their distortion and polarization. 

The theory extends easily to nearly-isostatic Kagome lattices, i.e., with next-nearest-neighbor interactions or elasticity in

the hinges, as long as the elastic constants of the bonds breaking isostaticity are kept small. It also extends to other isostatic

lattices that are on the brink of a regular-distorted, or polarized-unpolarized, phase transition. 

It is of interest to see if and how the theory could be applied to strongly distorted lattices in connection to the work of

Sun and Mao (2019) , of Saremi and Rocklin (2020) and of Marigo and Maurel (2016, 2017) . It is equally interesting to explore

how polarization influences the dynamic behavior and to investigate the role of the coupling measure of microinertia ρd̄ .

On a more fundamental level, potential corrections brought by microtwist elasticity to the models of strength of materials

(e.g., bending and torsion of beams) widely used by engineers are worthy of investigation in cases where the constitutive

materials are lattice-like. Finally, experimental efforts characterizing the polarized behavior of such lattice materials are

much needed. 
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Appendix A. The rank of the compatibility matrix 

We have seen that, for periodic configurations in a general Kagome lattice, the compatibility matrix reads 

C 0 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 −m 

′ 
1 m 

′ 
1 

m 

′ 
2 0 −m 

′ 
2 

−m 

′ 
3 m 

′ 
3 0 

0 −n 

′ 
1 n 

′ 
1 

n 

′ 
2 0 −n 

′ 
2 

−n 

′ 
3 n 

′ 
3 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (82) 

By the rank-nullity theorem, the number of zero modes is equal to Z = 6 − rank C 0 where 6 is the dimension of C 0 and

rank C 0 its rank. On one hand, translations systematically provide two linearly independent periodic zero modes so that

Z ≥ 2. On the other hand, the first three lines of matrix C are necessarily linearly independent because, for instance, m 2 and

m 3 can never be parallel. Thus, rank C ≥ 3 leaving us with two possibilities: (Z, rank C 0 ) = (2 , 4) or (3,3). 

If there exists a j such that m j and n j are misaligned, then Z = 2 . Indeed, say, for the sake of argument, that j = 1 . Then,

the extracted 4 × 4 matrix ⎡ 

⎢ ⎣ 

−m 

′ 
1 m 

′ 
1 

0 −m 

′ 
2 

m 

′ 
3 0 

−n 

′ 
1 n 

′ 
1 

⎤ 

⎥ ⎦ 

(83) 

has a non-zero determinant since otherwise m 2 and m 3 would be aligned. Therefore, C 0 is of rank 4 and Z = 2 . In contrast,

if for all j , m j and n j are parallel, then Z = 3 . As a matter of fact, m j and n j being aligned and unitary means they are equal

and opposite. In that case, the last three lines of C 0 are exactly the opposites of the first three ones and the rank of C 0 
cannot exceed its lower bound of 3 nor can Z decrease below its upper bound of 3. 

https://doi.org/10.13039/100000001
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Appendix B. Existence of Floquet-Bloch zero modes 

In the main text, it was proven that a Floquet-Bloch zero mode of wavenumber q such that Q j = 1 exists if and only if

m j = −n j . But then it is unclear whether other solutions exist where Q j � = 1 for all j . Here, we provide a sufficient condition

under which there exist no solutions to (23) outside of the lines Q j = 1 . 

Thus, let q be a real wavenumber such that Q j � = 1 for all j . Divide (23) by 
∏ 

j (1 − Q j ) yielding 

∑ 

j 

〈
b j n j , ̄x j+1 

〉
+ 

∑ 

j 

〈
b j n j , a j m̄ j 

〉
1 − Q j 

= 0 . (84)

Upon extracting the real part of this complex equation, it comes that 

∑ 

j 

〈
b j n j , ̄x j+1 

〉
+ 

∑ 

j 

〈
b j n j , a j m̄ j 

〉
2 

= 0 . (85)

Now let A m 

, A n and A r be the areas of the triangles ( a 1 m 1 , a 2 m 2 , a 3 m 3 ), ( b 1 n 1 , b 2 n 2 , b 3 n 3 ) and ( r 1 , r 2 , r 3 ); in particular

A r = A/ 2 is half of the area of a unit cell. Following some elementary algebraic manipulations, the above equation remarkably

turns out to be equivalent to 

A m 

+ A n = A r . (86)

In conclusion, in any Kagome lattice where A m 

+ A n � = A r , there exist no Floquet-Bloch zero modes with q outside of

the lines Q j = 1 . This holds in particular for lattices that are not “too distorted” where A m 

+ A n < A r . In particular, weakly-

distorted lattices such that all w j are non-zero are gapped at zero frequency except at the origin q = 0 . 

Appendix C. Influence of elasticity in the hinges 

Adding rotational springs so as to account for elasticity in the hinges is arguably equivalent to adding next-nearest-

neighbor interactions between nodes. Both have a stabilizing effect on the lattice and will block twisting motions leaving

translations as the only periodic zero modes. When the rotational spring constants are comparable to or higher than the

effective spring constants k j , the Kagome lattice will be far from the regular-distorted phase transition regime of interest.

Its study, from a homogenization point of view, can thus be done using standard tools as described by Hutchinson and

Fleck (2006) or by Lubensky et al. (2015) for instance and will not be pursued here. Instead, focus will be on lattices where

the rotational spring constants are much smaller than k j , specifically, where they are of second order compared to k j since

such lattices will be on the brink of a regular-distorted phase transition. 

Formally, the expansion of the motion Eq. (44) will change so as to include an additional second-order term C ′ 
H 
δ2 K H C H �0

due to the presence of elasticity in the hinges. Therein, C H is the periodic compatibility matrix corresponding to the rota-

tional springs or equivalently to the next-nearest-neighbor bonds whereas δ2 K H is the corresponding matrix of elastic con-

stants. This term is only relevant in the last step of the homogenization theory where the corrections D 

′ C ′ 
H 
δ2 K H C H �0 and

T ′ C ′ H δ2 K H C H �0 need to be added to the macroscopic motion equations. However, the former of these two corrections is zero

whereas the latter is proportional to ϕ. This is because translations remain periodic zero modes: C H D = 0 . Accordingly, the

effective constitutive law remains the same as without elasticity in the hinges up to changing the effective parameter L into

L = κ + 

γ 2 

ah 

∑ 

j 

w 

2 
j k j (87)

with κ = T ′ C ′ 
H 
δ2 K H C H T /A and A being the unit cell area. 

References 

Allaire, G. , Palombaro, M. , Rauch, J. , 2011. Diffractive geometric optics for Bloch wave packets. Arch. Ration. Mech. Anal. 202, 373–426 . 

Auffray, N. , Bouchet, R. , Bréchet, Y. , 2010. Strain gradient elastic homogenization of bidimensional cellular media. Int. J. Solids Struct. 47, 1698–1710 . 
Bacigalupo, A. , Gambarotta, L. , 2014. Homogenization of periodic hexa- and tetrachiral cellular solids. Compos. Struct. 116, 461–476 . 

Bensoussan, A. , Lions, J.L. , Papanicolaou, G. , 1978. Asymptotic Analysis for Periodic Structures. North-Holland Publishing Company . 

Bilal, O.R. , Süsstrunk, R. , Daraio, C. , Huber, S.D. , 2017. Intrinsically polar elastic metamaterials. Adv. Mater. 29, 1700540 . 
Birkhoff, G. , MacLane, S. , 1998. A survey of Modern Algebra. Taylor and Francis . 

Chen, Y. , Liu, X.N. , Hu, G.K. , 2014. Micropolar modeling of planar orthotropic rectangular chiral lattices. Comptes Rendus Mec. 342, 273–283 . 
Craster, R.V. , Kaplunov, J. , Pichugin, A.V. , 2010. High-frequency homogenization for periodic media. Proc. R. Soc. A 466, 2341–2362 . 

Dresselhaus, M.S. , Dresselhaus, G. , Jório, A. , 2008. Group Theory: Application to the Physics of Condensed Matter. Springer-Verlag Berlin Heidelberg . 
Eringen, A.C. , 1999. Microcontinuum Field Theories I: Foundations and Solids. Springer, New York . 

Forest, S. , Sievert, R. , 2006. Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 . 

Frenzel, T. , Kadic, M. , Wegener, M. , 2017. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 . 
Harutyunyan, D. , Milton, G.W. , Craster, R.V. , 2016. High-frequency homogenization for travelling waves in periodic media. Proc. R. Soc. A 472, 20160066 . 

Hutchinson, R.G. , Fleck, N.A. , 2006. The structural performance of the periodic truss. J. Mech. Phys. Solids 54, 756–782 . 
Kane, C.L. , Lubensky, T.C. , 2014. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 . 

Lakes, R.S. , 1987. Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 . 
Lakes, R.S. , 2001. Elastic and viscoelastic behavior of chiral materials. Int. J. Mech. Sci. 43, 1579–1589 . 

http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0001
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0001
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0001
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0001
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0002
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0002
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0002
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0002
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0003
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0003
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0003
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0004
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0004
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0004
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0004
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0005
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0005
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0005
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0005
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0005
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0006
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0006
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0006
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0007
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0007
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0007
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0007
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0008
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0008
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0008
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0008
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0009
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0009
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0009
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0009
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0010
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0010
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0011
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0011
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0011
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0012
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0012
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0012
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0012
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0013
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0013
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0013
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0013
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0014
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0014
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0014
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0015
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0015
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0015
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0017
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0017
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0018
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0018


22 H. Nassar, H. Chen and G. Huang / Journal of the Mechanics and Physics of Solids 144 (2020) 104107 

 

 

 

 

 

 

 

 

 

Lakes, R.S. , Benedict, R.L. , 1982. Noncentrosymmetry in micropolar elasticity. Int. J. Eng. Sci. 20, 1161–1167 . 
Liu, X.N. , Huang, G.L. , Hu, G.K. , 2012. Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. J. Mech. Phys. Solids 60,

1907–1921 . 
Lubensky, T.C. , Kane, C.L. , Mao, X.M. , Souslov, A. , Sun, K. , 2015. Phonons and elasticity in critically coordinated lattices. Reports Prog. Phys. 78, 073901 . 

Makwana, M. , Antonakakis, T. , Maling, B. , Guenneau, S. , Craster, R.V. , 2016. Wave mechanics in media pinned at Bravais lattice points. SIAM J. Appl. Math.
76, 1–26 . 

Mao, X.M. , Lubensky, T.C. , 2018. Maxwell lattices and topological mechanics. Annu. Rev. Condens. Matter Phys. 9, 413–433 . 

Marigo, J.J. , Maurel, A. , 2016. Homogenization models for thin rigid structured surfaces and films. J. Acoust. Soc. Am. 140, 260–273 . 
Marigo, J.J. , Maurel, A. , 2017. Second order homogenization of subwavelength stratified media including finite size effect. SIAM J. Appl. Math. 77, 721–743 . 

Milton, G.W. , 2013. Adaptable nonlinear bimode metamaterials using rigid bars, pivots, and actuators. J. Mech. Phys. Solids 61, 1561–1568 . 
Milton, G.W. , 2013. Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J. Mech. Phys.

Solids 61, 1543–1560 . 
Milton, G.W. , Cherkaev, A.V. , 1995. Which elasticity tensors are realizable? J. Eng. Mater. Technol. 117, 483 . 

Mindlin, R.D. , 1964. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 . 
Nassar, H. , Chen, Y.Y. , Huang, G.L. , 2018. A degenerate polar lattice for cloaking in full two-dimensional elastodynamics and statics. Proc. R. Soc. A 474,

20180523 . 

Nassar, H. , Chen, Y.Y. , Huang, G.L. , 2019. Isotropic polar solids for conformal transformation elasticity and cloaking. J. Mech. Phys. Solids 129, 229–243 . 
Nassar, H. , Chen, Y.Y. , Huang, G.L. , 2020. Polar metamaterials: a new outlook on resonance for cloaking applications. Phys. Rev. Lett. 124, 84301 . 

Nassar, H. , Lebée, A. , Monasse, L. , 2017. Curvature, metric and parametrization of origami tessellations: theory and application to the eggbox pattern. Proc.
R. Soc. A 473, 20160705 . 

Nassar, H. , Lebée, A. , Monasse, L. , 2018. Fitting surfaces with the Miura tessellation. In: Lang, R.J., Bolitho, M., You, Z. (Eds.), Origami 7. Oxford, pp. 811–826 .
Norris, A.N. , 2008. Acoustic cloaking theory. Proc. R. Soc. A 464, 2411–2434 . 

Peraza-Hernandez, E.A. , Hartl, D.J. , Malak Jr, R.J. , Lagoudas, D.C. , 2014. Origami-inspired active structures: a synthesis and review. Smart Mater. Struct. 23,

094001 . 
Rocklin, D.Z. , 2017. Directional mechanical response in the bulk of topological metamaterials. New J. Phys. 19, 065004 . 

Rocklin, D.Z. , Zhou, S.N. , Sun, K. , Mao, X.M. , 2017. Transformable topological mechanical metamaterials. Nat. Commun. 8, 14201 . 
Rosi, G. , Auffray, N. , 2016. Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion 63, 120–134 . 

Rus, D. , Tolley, M.T. , 2018. Design, fabrication and control of origami robots. Nat. Rev. Mater. 3, 101–112 . 
Saremi, A. , Rocklin, D.Z. , 2020. Topological elasticity of flexible structures. Phys. Rev. X 10, 011052 . 

Spadoni, A. , Ruzzene, M. , 2012. Elasto-static micropolar behavior of a chiral auxetic lattice. J. Mech. Phys. Solids 60, 156–171 . 

Sun, K. , Mao, X.M. , 2019. Continuum theory for topological edge soft modes. Phys. Rev. Lett. 124, 207601 . 
Sun, K. , Souslov, A. , Mao, X.M. , Lubensky, T.C. , 2012. Surface phonons, elastic response, and conformal invariance in twisted kagome lattices. Proc. Natl.

Acad. Sci. U. S. A. 109, 12369–12374 . 
Xu, X.C. , Wang, C. , Shou, W. , Du, Z.L. , Chen, Y.Y. , Li, B. , Matusik, W. , Nassar, H. , Huang, G.L. , 2020. Physical realization of elastic cloaking with a polar material.

Phys. Rev. Lett. 124, 114301 . 

http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0019
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0019
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0019
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0020
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0020
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0020
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0020
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0021
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0021
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0021
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0021
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0021
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0021
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0022
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0022
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0022
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0022
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0022
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0022
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0023
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0023
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0023
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0024
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0024
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0024
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0025
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0025
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0025
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0026
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0026
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0027
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0027
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0028
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0028
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0028
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0029
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0029
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0030
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0030
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0030
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0030
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0031
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0031
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0031
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0031
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0032
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0032
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0032
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0032
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0033
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0033
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0033
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0033
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0034
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0034
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0034
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0034
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0035
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0035
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0036
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0036
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0036
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0036
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0036
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0037
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0037
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0038
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0038
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0038
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0038
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0038
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0039
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0039
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0039
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0040
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0040
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0040
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0041
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0041
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0041
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0042
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0042
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0042
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0043
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0043
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0043
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0044
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0044
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0044
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0044
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0044
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0045
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0045
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0045
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0045
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0045
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0045
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0045
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0045
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0045
http://refhub.elsevier.com/S0022-5096(20)30341-0/sbref0045

	Microtwist elasticity: A continuum approach to zero modes and topological polarization in Kagome lattices
	1 Introduction
	2 Kagome lattices and their zero modes
	2.1 Kinematics and dynamics of Kagome lattices
	2.2 Zero modes
	2.3 Periodic zero modes
	2.4 Floquet-Bloch zero modes

	3 Homogenization of Kagome lattices: the microtwist continuum
	3.1 Prelude: why Cauchy elasticity is not enough
	3.2 Three perturbations
	3.3 Asymptotic expansions
	3.4 Leading and first order auxiliary problems
	3.5 Macroscopic equations of motion
	3.6 Microtwist continuum
	3.7 Discussion

	4 Microtwist elasticity and Cauchy’s elasticty
	4.1 Model reduction to Cauchy’s continuum
	4.2 Example: equilateral lattices
	4.3 Dispersion diagrams

	5 Elastic and topological polarization
	5.1 Parity symmetry in microtwist elasticity
	5.2 The zero modes of the microtwist continuum
	5.3 Polarization effects in the distribution of zero modes
	5.4 Trivial and topological polarization
	5.5 Indentation tests

	6 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A The rank of the compatibility matrix
	Appendix B Existence of Floquet-Bloch zero modes
	Appendix C Influence of elasticity in the hinges
	References


