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A B S T R A C T

Kagome lattices have recently attracted a great attention because of the unique mechanical properties including
their topological polarization and localized zero modes at certain edges, which challenge the standard effective
continuum theories. The previous study of these systems has been predominantly focused on the ideal Kagome
lattice with the spring–mass models. In this study, we stretch this paradigm by exploring the hinged Kagome
lattices towards practical application to understand the topological polarization under the framework of
the microtwist continuum. The hinges are modeled by ligaments capable of supporting stretching, shear
and bending deformations. The microtwist elasticity is then formulated thanks to leading order two-scale
asymptotics and its constitutive and balance equations are derived. Performance of the proposed theory
is validated by the exact solution for predicting dispersion relations and periodic zero modes. We further
demonstrate the effectiveness of this theory through numerical simulations as well as experimental testing.
Finally, nonuniform deformation under complex loadings and parity asymmetric surface waves in microtwist
media are explored. Our study provides a great potential of using the microtwist medium to design, control
and program hinge-based metamaterials.
1. Introduction

Because of the highest structure efficiency per unit weight, me-
chanical lattices are broadly used in weight-critical applications like
aerospace engineering and automobile industry. When the element
has poor connectivity, the lattice-based material exhibits a number of
zero deformation modes that cost little to no elastic energy (Grima
and Evans, 2000; Coulais, 2016; Coulais et al., 2018; Czajkowski
et al., 2022). Although disastrous in some scenarios, the presence
of zero modes could be beneficial. The use of pentamode materials
with five zero modes is the most spectacular application in acoustic
cloaking (Milton and Cherkaev, 1995; Kadic et al., 2012; Norris and
Shuvalov, 2011; Milton, 2013). In addition, polar materials with one
intrinsic zero mode have been successfully suggested in elastic cloak-
ing (Nassar et al., 2018, 2019, 2020b; Zhang et al., 2020; Xu et al.,
2020). In those applications, zero modes in the lattice appear with
Parity (P)-symmetry, i.e., the solution invariance under the spatial
inversion.

As a matter of fact, there are also mechanical lattices with a broken
P-symmetry, which means that the solution is variant under the space
inversion. Lattice materials with such property are polarized whose
zero modes grow in amplitude in a preferential direction and decay
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in the opposite direction. Kagome lattices are one of the outstanding
examples on topological polarization in isostatic lattices. For example,
a regular Kagome lattice exhibits P-symmetry bulk zero modes which
maintain uniform amplitude across the whole lattice. However, general
geometric distortions of the lattice will make zero modes polarized
where the zero modes adopt exponential profiles that decay towards
the bulk and re-localize at free boundaries. Kane and Lubensky (2014)
characterized the conditions under which the re-localization of zero
modes towards the free boundaries of a distorted lattice happens un-
evenly and favors certain boundaries over their opposites. The resulting
P-asymmetric distribution of zero modes in Kagome lattices are topo-
logical in nature which can be quantified by a topological polarization
vector, so that they are immune to continuous perturbations, small and
large, as long as the signs of distortion parameters remain unchanged.
The topological polarization leads to the appearance of elastic polariza-
tion effects whereby a finite sample appears hard when indented on one
side and soft when indented on the opposite side (Rocklin et al., 2017;
Bilal et al., 2017). The polarization behavior due to P-asymmetric zero
modes cannot be properly captured from the perspective of conven-
tional continuum mechanics and even micropolar theory (Cosserat and
Cosserat, 1909). Recently, based on spring–mass models, we formulated
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Fig. 1. Discrete modeling of the regular hinged Kagome lattice. (a) Photograph of the regular hinged Kagome lattice. Scale bar, 10 mm. (b) Schematic of the regular hinged
Kagome lattice and its corresponding unit cell. (c) The discrete unit cell of the hinged Kagome lattice comprises of rigid equilateral triangles with length 𝐿 connected by ligaments
to support stretching, shear and bending deformations. 𝐦𝑗 and 𝐧𝑗 are the unit vectors from the center ‘‘𝑂1 ’’ and ‘‘𝑂2 ’’ to nodes (1, 2,3) and nodes (4,5,6), respectively.
a new microtwist theory capable of rendering polarization effects of the
ideal 2D Kagome lattice and 3D pyrochlore lattice on a macroscopic
scale and quantitatively predicting the polarized indentation response
of finite samples (Nassar et al., 2020a; Xia et al., 2021). However,
the developed continuum theory cannot directly be applied to study
polarization behavior of physical Kagome lattices featuring solid tri-
angles connected with elastic hinges, which can be manufactured via
laser cutting technique (see Fig. 1a). The ligaments connecting the
triangular plates of each cell are slender beamlike structural elements
endowed with finite thickness, which can deform under stretching,
shear and bending mechanisms in the plane of the lattice, with the
bending stiffness being significantly smaller than the stretching and
shear stiffnesses. The local deformation occurring at ligaments, which
can be described via three corresponding stiffnesses, has a significant
impact on the global characteristics of hinged Kagome lattices. To
the best of our knowledge, there exists no known elasticity theory in
modeling the hinged Kagome lattices to consider the hybrid mechanism
where the hinges carry bending, stretching and shear deformations and
quantitatively predict polarization effects.

It is the purpose of the present paper to propose a generalized 2D
effective medium theory of the physical hinged Kagome lattice, which
2

is capable of faithfully reproducing microstructural zero modes and
related polarization effects on the continuum scale. Theoretical formu-
lations are conducted for the hinged Kagome lattice by considering the
stretching, bending and shear deformations in the ligaments as flexible
beams. Specifically, since the bending stiffness of ligaments does not
allow free relative rotation of the plates, the zero-energy topological
modes are lifted to finite frequencies, which is strikingly different from
the one from the ideal Kagome lattices. By progressively perturbing
the geometry of regular hinged Kagome lattices so as to transform
them into distorted ones, the total displacement field is composed
of the macroscopic displacement field and of an additional degree
of freedom (DOF), namely the twisting motion, directly related to a
microstructural zero mode. The resulting microtwist theory is therefore
an enriched continuum allowing for the presence of periodic zero mode
in the form of an additional DOF and the additional odd-order tensor
elasticity constants are responsible for non-standard elasticity behavior,
in particular P-asymmetry.

The paper is organized as follows. In Section 2, we establish a
discrete model by replacing hinges with flexible beams and determine
the governing equations. Periodic zero modes in hinged Kagome lattices
are then investigated. In Section 3, we take the perturbation assump-
tions and derive microtwist elasticity for the weakly-distorted hinged
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Kagome lattices. The performance of microtwist elasticity is then val-
idated by comparing with the exact solution of dispersion relations
and zero modes for hinged Kagome lattices. In Section 4, we validate
the microtwist theory through indentation and three-point bending
experiments. In Section 5, we provide numerical demonstrations of
nonuniform deformations and parity asymmetric wave behaviors in
microtwist media. The last section contains a brief conclusion.

2. Kinematics and dynamics of the hinged Kagome lattices and
zero modes

General hinged Kagome lattices are introduced and classified into
two phases, regular and distorted, based on the number and type of zero
modes they support. To capture the zero modes of the hinged Kagome
lattices, we first establish a discrete model in which we consider rigid
triangles connected by ligaments acting as hinges which are repre-
sented by flexible beams with finite length to support stretching, shear
and bending deformations. Their geometry, kinematics and dynamics
of the lattices are then formulated in anticipation of the needs of
formulation of the microtwist theory in Section 3.

2.1. Discrete modeling of the hinged Kagome lattices

Consider the regular hinged Kagome lattice shown in Fig. 1b in a pe-
riodic reference configuration. The lattice are composed of a network of
solid triangles connected by thin ligaments. Vectors 𝐫𝑗 , 𝑗 ∈ {1, 2, 3} are
lattice vectors: the reference configuration is invariant by translation
along any integer linear combination of the 𝐫𝑗 (see Appendix A). The
nit cell of the hinged Kagome lattice is modeled as shown in Fig. 1c,
hich is composed of two solid triangles connecting with the ligament
ith a finite length 𝓁 and six nodes on their vertices with the basis
𝑘, 𝑘 ∈ {1, 2, 3, 4, 5, 6}. The ligaments are deformed as elastic beams
o admit stretching, shear and bending deformations, with stiffnesses
eing 𝑘𝑙, 𝑘𝑠 and 𝑘𝑏, respectively. In order to capture the ligament
eformation, the three elastic stiffnesses are independently determined
y applying three small patterned deformations for a specific hinge
eometry (details in Appendix B). It is also noted that the stored
lastic energy due to bending deformation in the ligament is much
maller than those due to stretching and shear deformations. The initial
osition of node 𝑘 in unit cell (𝑚, 𝑛) reads
𝑚,𝑛
𝑘 = 𝐱𝑘 + 𝐱𝑚,𝑛, 𝐱𝑚,𝑛 = 𝑚𝐫1 + 𝑛𝐫2, (𝑚, 𝑛) ∈ Z2. (1)

Each unit cell (𝑚, 𝑛) has six degrees of freedom: the translation
displacements, 𝐮𝑚,𝑛𝑖 , and the rotational motions 𝜑𝑚,𝑛

𝑖 with 𝑖 ∈ {1, 2}. We
let the origin of coordinates ‘‘𝑂1’’ and ‘‘𝑂2’’ be the geometric center of
the two triangles, respectively. Accordingly, the reference positions of
nodes 1, 2 and 3 in the top triangle, with respect to the origin ‘‘𝑂1’’,
are

𝐱1 = 𝑎𝐦1, 𝐱2 = 𝑎𝐦2, 𝐱3 = 𝑎𝐦3, (2)

and the reference positions of nodes 4, 5 and 6 in the bottom triangle,
with respect to the origin ‘‘𝑂2’’, are

𝐱4 = 𝑎𝐧1, 𝐱5 = 𝑎𝐧2, 𝐱6 = 𝑎𝐧3, (3)

with 𝑎 denoting the length between nodes and the corresponding ori-
gins. The corresponding unit vectors of flexible beams can be obtained
as

𝐞𝑗 =
𝐦𝑗 − 𝐧𝑗

‖

‖

‖

𝐦𝑗 − 𝐧𝑗
‖

‖

‖

. (4)

There exist three independent deformations in the ligament. The
tretching deformation can be obtained as
𝑚,𝑛
𝑙1

=
⟨

𝐞1, (𝐮
𝑚,𝑛
2 + 𝑎�̄�1𝜑

𝑚,𝑛
2 ) − (𝐮𝑚,𝑛1 + 𝑎�̄�1𝜑

𝑚,𝑛
1 )

⟩

,

𝑚,𝑛
𝑙2

=
⟨

𝐞2, (𝐮
𝑚,𝑛+1
2 + 𝑎�̄�2𝜑

𝑚,𝑛+1
2 ) − (𝐮𝑚,𝑛1 + 𝑎�̄�2𝜑

𝑚,𝑛
1 )

⟩

,

𝑚,𝑛 =
⟨

𝐞 , (𝐮𝑚−1,𝑛 + 𝑎�̄� 𝜑𝑚−1,𝑛) − (𝐮𝑚,𝑛 + 𝑎�̄� 𝜑𝑚,𝑛)
⟩

,

(5)
3

𝑙3 3 2 3 2 1 3 1
nd the shear deformation is
𝑚,𝑛
𝑠1

=
⟨

�̄�1, (𝐮
𝑚,𝑛
2 + 𝑎�̄�1𝜑

𝑚,𝑛
2 ) − (𝐮𝑚,𝑛1 + 𝑎�̄�1𝜑

𝑚,𝑛
1 )

⟩

− 𝓁(𝜑𝑚,𝑛
1 + 𝜑𝑚,𝑛

2 )∕2,

𝛥𝑚,𝑛
𝑠2

=
⟨

�̄�2, (𝐮
𝑚,𝑛+1
2 + 𝑎�̄�2𝜑

𝑚,𝑛+1
2 ) − (𝐮𝑚,𝑛1 + 𝑎�̄�2𝜑

𝑚,𝑛
1 )

⟩

− 𝓁(𝜑𝑚,𝑛
1 + 𝜑𝑚,𝑛+1

2 )∕2,

𝛥𝑚,𝑛
𝑠3

=
⟨

�̄�3, (𝐮
𝑚−1,𝑛
2 + 𝑎�̄�3𝜑

𝑚−1,𝑛
2 ) − (𝐮𝑚,𝑛1 + 𝑎�̄�3𝜑

𝑚,𝑛
1 )

⟩

− 𝓁(𝜑𝑚,𝑛
1 + 𝜑𝑚−1,𝑛

2 )∕2,

(6)

and the bending deformation is

𝛥𝑚,𝑛
𝜃1

= 𝜑𝑚,𝑛
2 − 𝜑𝑚,𝑛

1 ,

𝛥𝑚,𝑛
𝜃2

= 𝜑𝑚,𝑛+1
2 − 𝜑𝑚,𝑛

1 ,

𝛥𝑚,𝑛
𝜃3

= 𝜑𝑚−1,𝑛
2 − 𝜑𝑚,𝑛

1 ,

(7)

where ⟨⟩ is the inner product and a superimposed bar symbolizes a
plane rotation of 𝜋∕2.

Then, the forces acting at the center of two triangles can be written
as
𝐅𝑚,𝑛
1 = 𝑘𝑙(𝛥

𝑚,𝑛
𝑙1

𝐞1 + 𝛥𝑚,𝑛
𝑙2

𝐞2 + 𝛥𝑚,𝑛
𝑙3

𝐞3) + 𝑘𝑠(𝛥𝑚,𝑛
𝑠1

�̄�1 + 𝛥𝑚,𝑛
𝑠2

�̄�2 + 𝛥𝑚,𝑛
𝑠3

�̄�3)

+ 𝑘𝑏(𝛥
𝑚,𝑛
𝜃1

�̄�1∕𝑎 + 𝛥𝑚,𝑛
𝜃2

�̄�2∕𝑎 + 𝛥𝑚,𝑛
𝜃3

�̄�3∕𝑎),
(8)

and
𝐅𝑚,𝑛
2 = −𝑘𝑙(𝛥

𝑚,𝑛
𝑙1

𝐞1 + 𝛥𝑚,𝑛−1
𝑙2

𝐞2 + 𝛥𝑚+1,𝑛
𝑙3

𝐞3) − 𝑘𝑠(𝛥𝑚,𝑛
𝑠1

�̄�1 + 𝛥𝑚,𝑛−1
𝑠2

�̄�2
+ 𝛥𝑚+1,𝑛

𝑠3
�̄�3) − 𝑘𝑏(𝛥

𝑚,𝑛
𝜃1

�̄�1∕𝑎 + 𝛥𝑚,𝑛−1
𝜃2

�̄�2∕𝑎 + 𝛥𝑚+1,𝑛
𝜃3

�̄�3∕𝑎).
(9)

The moments acting at the center of two triangles can be obtained as

𝑀𝑚,𝑛
1 = 𝑘𝑙(𝛥

𝑚,𝑛
𝑙1

⟨𝐞1, 𝑎�̄�1⟩ + 𝛥𝑚,𝑛
𝑙2

⟨𝐞2, 𝑎�̄�2⟩ + 𝛥𝑚,𝑛
𝑙3

⟨𝐞3, 𝑎�̄�3⟩ )

+ 𝑘𝑠(𝛥𝑚,𝑛
𝑠1

⟨�̄�1, 𝑎�̄�1⟩ + 𝛥𝑚,𝑛
𝑠2

⟨�̄�2, 𝑎�̄�2⟩ + 𝛥𝑚,𝑛
𝑠3

⟨�̄�3, 𝑎�̄�3⟩)

+ 𝑘𝑏(𝛥
𝑚,𝑛
𝜃1

+ 𝛥𝑚,𝑛
𝜃2

+ 𝛥𝑚,𝑛
𝜃3

),

(10)

and
𝑀𝑚,𝑛

2 = −𝑘𝑙(𝛥
𝑚,𝑛
𝑙1

⟨𝐞1, 𝑎�̄�1⟩ + 𝛥𝑚,𝑛−1
𝑙2

⟨𝐞2, 𝑎�̄�2⟩ + 𝛥𝑚+1,𝑛
𝑙3

⟨𝐞3, 𝑎�̄�3⟩)

− 𝑘𝑠(𝛥𝑚,𝑛
𝑠1

⟨�̄�1, 𝑎�̄�1⟩ + 𝛥𝑚,𝑛−1
𝑠2

⟨�̄�2, 𝑎�̄�2⟩ + 𝛥𝑚+1,𝑛
𝑠3

⟨�̄�3, 𝑎�̄�3⟩)

− 𝑘𝑏(𝛥
𝑚,𝑛
𝜃1

+ 𝛥𝑚,𝑛−1
𝜃2

+ 𝛥𝑚+1,𝑛
𝜃3

).

(11)

Finally, the equations of the motion of the unit cell (𝑚, 𝑛) can be
stated as
𝑚𝑖�̈�

𝑚,𝑛
𝑖 = 𝐅𝑚,𝑛

𝑖 ,

𝐼𝑖�̈�
𝑚,𝑛
𝑖 = 𝑀𝑚,𝑛

𝑖 ,
(12)

where 𝑚𝑖 and 𝐼𝑖 are the mass and moment of inertia of the 𝑖th triangle,
respectively, with

𝐼1 =
𝑚1
36

(‖
‖

𝑎𝐦2 − 𝑎𝐦3
‖

‖

2 + ‖

‖

𝑎𝐦3 − 𝑎𝐦1
‖

‖

2 + ‖

‖

𝑎𝐦1 − 𝑎𝐦2
‖

‖

2),

𝐼2 =
𝑚2
36

(‖
‖

𝑎𝐧2 − 𝑎𝐧3‖‖
2 + ‖

‖

𝑎𝐧3 − 𝑎𝐧1‖‖
2 + ‖

‖

𝑎𝐧1 − 𝑎𝐧2‖‖
2).

2.2. Periodic zero modes

Analyzing configurations where the various fields of interest vary
slowly with respect to time and the unit cell index (𝑚, 𝑛) is key to
building an effective substitution medium of hinged Kagome lattices. By
the same logic, the configurations of the unit cell do not depend on time
and (𝑚, 𝑛) either. These are referred to static periodic configurations and
are adopted in the remained of this section for the purpose of the theory
of microtwist homogenization presented in Section 3.

Dismissing the dependence over (𝑚, 𝑛) greatly simplifies the equa-
tions in Section 2.1. As a result, stretching and shear deformations are
given by the matrix product

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝛥𝑙1

𝛥𝑙2

𝛥𝑙3

𝛥𝑠1

𝛥𝑠2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

= (𝐂𝑙 + 𝐂𝓁)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐮1
𝐮2
𝜑1

𝜑2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (13)
⎣

𝛥𝑠3⎦
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𝐂

w
d

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

T

𝐄

w
a
A
h

−

w
i
p
i
p

o
n
∑

I
where

𝐂𝑙 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝐞′1 𝐞′1 − ⟨𝐞1, 𝑎�̄�1⟩ ⟨𝐞1, 𝑎�̄�1⟩
−𝐞′2 𝐞′2 − ⟨𝐞2, 𝑎�̄�2⟩ ⟨𝐞2, 𝑎�̄�2⟩
−𝐞′3 𝐞′3 − ⟨𝐞3, 𝑎�̄�3⟩ ⟨𝐞3, 𝑎�̄�3⟩
−�̄�′1 �̄�′1 − ⟨�̄�1, 𝑎�̄�1⟩ ⟨�̄�1, 𝑎�̄�1⟩
−�̄�′2 �̄�′2 − ⟨�̄�2, 𝑎�̄�2⟩ ⟨�̄�2, 𝑎�̄�2⟩
−�̄�′3 �̄�′3 − ⟨�̄�3, 𝑎�̄�3⟩ ⟨�̄�3, 𝑎�̄�3⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝓁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟎 𝟎 0 0

𝟎 𝟎 0 0

𝟎 𝟎 0 0

𝟎 𝟎 −𝓁∕2 −𝓁∕2

𝟎 𝟎 −𝓁∕2 −𝓁∕2

𝟎 𝟎 −𝓁∕2 −𝓁∕2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(14)

ith a prime being a conjugate transpose. Meanwhile, the bending
eformation is given by the following matrix product:

0

0

0

𝛥𝜃1

𝛥𝜃2

𝛥𝜃3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐂𝑏

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐮1
𝐮2
𝜑1

𝜑2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐂𝑏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟎 𝟎 0 0

𝟎 𝟎 0 0

𝟎 𝟎 0 0

𝟎 𝟎 −1 1

𝟎 𝟎 −1 1

𝟎 𝟎 −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (15)

hen, forces and moments in the unit cell can be expressed as

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐅1

𝐅2

𝐌1

𝐌2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= −𝐂′
𝑙𝐊

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝑙1

𝛥𝑙2

𝛥𝑙3

𝛥𝑠1

𝛥𝑠2

𝛥𝑠3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 𝐄𝑏𝐊𝑏

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

𝛥𝜃1

𝛥𝜃2

𝛥𝜃3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝟎 𝟎 𝟎 −�̄�1∕𝑎 −�̄�2∕𝑎 −�̄�3∕𝑎

𝟎 𝟎 𝟎 �̄�1∕𝑎 �̄�2∕𝑎 �̄�3∕𝑎
0 0 0 −1 −1 −1

0 0 0 1 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(16)

here 𝐊 = diag(𝑘𝑙 , 𝑘𝑙 , 𝑘𝑙 , 𝑘𝑠, 𝑘𝑠, 𝑘𝑠) and 𝐊𝑏 = diag(0, 0, 0, 𝑘𝑏, 𝑘𝑏, 𝑘𝑏)
re diagonal matrices gathering the elastic constants of the beam.
ccordingly, the equation of motion for periodic configurations of the
inged Kagome lattice can be expressed as

[

𝐂′
𝑙𝐊(𝐂𝑙 + 𝐂𝓁) + 𝐄𝑏𝐊𝑏𝐂𝑏

]

Φ + 𝐅 = 𝐆Φ̈, Φ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐮1
𝐮2
𝜑1

𝜑2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (17)

ith 𝐆 = diag(𝑚1𝐈, 𝑚2𝐈, 𝐼1, 𝐼2) being the mass matrix, 𝐈 being the 2 × 2
dentity matrix and 𝐅 being a column (𝐟1, 𝐟2, 𝜏1, 𝜏2) of external forces
eriodically applied to the center of two triangles. At last, dismiss-
ng dependence upon time yields the equilibrium equation for static
eriodic configurations:

−
[

𝐂′
𝑙𝐊(𝐂𝑙 + 𝐂𝓁) + 𝐄𝑏𝐊𝑏𝐂𝑏

]

Φ + 𝐅 = 𝟎. (18)

We then refer to Φ as a periodic zero mode when it is a free solution
f the above equation (18), i.e., under 𝐅 = 0. A periodic zero mode
ecessarily stores zero elastic energy as

𝑘𝑙𝛥
2
𝑙𝑗
+ 𝑘𝑠𝛥

2
𝑠𝑗
+ 𝑘𝑏𝛥

2
𝜃𝑗

= 0, 𝑗 ∈ {1, 2, 3}. (19)
4

𝑗

n the hinged lattice, 𝑘𝑏𝛥2
𝜃𝑗

≪ min{𝑘𝑙𝛥2
𝑙𝑗
, 𝑘𝑠𝛥2

𝑠𝑗
} (see Appendix B). As

such, a zero mode is a configuration of the lattice where no deforma-
tions are due to stretching and shear so that

𝛥𝑙𝑗 = 𝛥𝑠𝑗 = 0. (20)

Specifically, deformations due to the stretching and shear are given by

∆ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝑙1

𝛥𝑙2

𝛥𝑙3

𝛥𝑠1

𝛥𝑠2

𝛥𝑠3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐂

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐮1
𝐮2
𝜑1

𝜑2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (21)

where 𝐂 is the compatibility matrix and takes the matrix form

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝐞′1 𝐞′1 − ⟨𝐞1, 𝑎�̄�1⟩ ⟨𝐞1, 𝑎�̄�1⟩
−𝐞′2 𝐞′2 − ⟨𝐞2, 𝑎�̄�2⟩ ⟨𝐞2, 𝑎�̄�2⟩
−𝐞′3 𝐞′3 − ⟨𝐞3, 𝑎�̄�3⟩ ⟨𝐞3, 𝑎�̄�3⟩
−�̄�′1 �̄�′1 − ⟨�̄�1, 𝑎�̄�1⟩ − 𝓁∕2 ⟨�̄�1, 𝑎�̄�1⟩ − 𝓁∕2

−�̄�′2 �̄�′2 − ⟨�̄�2, 𝑎�̄�2⟩ − 𝓁∕2 ⟨�̄�2, 𝑎�̄�2⟩ − 𝓁∕2

−�̄�′3 �̄�′3 − ⟨�̄�3, 𝑎�̄�3⟩ − 𝓁∕2 ⟨�̄�3, 𝑎�̄�3⟩ − 𝓁∕2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (22)

Then, periodic zero modes are null vectors of matrix 𝐂. By the rank-
nullity theorem, their number is equal to 𝑍 = 6 − rank 𝐂 where 6 is
the dimension of 𝐂 and rank 𝐂 its rank. On the other hand, the first
three lines of matrix 𝐂 are necessarily linearly independent, so that
rank 𝐂 ≥ 3 leaves us with two possibilities: (𝑍, rank 𝐂) = (2, 4) or (3, 3).
Lattices satisfying 𝑍 = 2 are the ones we call distorted. These have no
zero modes other than translations and have initially at least one pair
(𝐦𝑗 ,𝐧𝑗 ) of misaligned edges. Hinged Kagome lattices that do not belong
to this first class will be called regular. These satisfy 𝑍 = 3 and have
initially aligned edges: 𝐦𝑗 = −𝐧𝑗 . Therefore, the compatibility matrix
𝐂 of a regular lattice can be further simplified as

𝐂0 = 𝐂𝑙0 + 𝐂𝓁0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝐞′1 𝐞′1 0 0

−𝐞′2 𝐞′2 0 0

−𝐞′3 𝐞′3 0 0

−�̄�′1 �̄�′1 −𝑎 − 𝓁∕2 −𝑎 − 𝓁∕2

−�̄�′2 �̄�′2 −𝑎 − 𝓁∕2 −𝑎 − 𝓁∕2

−�̄�′3 �̄�′3 −𝑎 − 𝓁∕2 −𝑎 − 𝓁∕2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (23)

Global translations are characterized by 𝐮1 = 𝐮2 = 𝐔 and take the
matrix form as

Φ0 = 𝐃𝐔, 𝐃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐈
𝐈
𝟎
𝟎

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (24)

which clearly satisfy 𝐂0Φ0 = 𝟎. In addition to two periodic translation
zero modes, the lattice also admits a third one given by the twist motion
between two triangles

Φ0 = 𝐓𝜑, 𝐓 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝟎
𝟎
−1

1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (25)

Consequently, the periodic zero modes of a regular hinged Kagome
lattice are given by the linear combination
Φ0 = 𝐃𝐔 + 𝐓𝜑. (26)
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Fig. 2. Illustration of distortion parameters 𝑤𝑗 (red arrows) inducing a regular-distorted phase transition from the hinged regular Kagome lattice to the hinged distorted Kagome
lattice. The elevations 𝑤𝑗 are the only components of the distortion that are relevant here.
3. Microtwist modeling of weakly-distorted hinged Kagome lat-
tices

3.1. Perturbation assumptions

Having fully characterized the static periodic configurations of
hinged Kagome lattices in their default regular state, it is time to
capture the polarized mechanical behavior of distorted hinged Kagome
lattices by introducing four perturbations. Starting with a regular
hinged Kagome lattice, a phase transition can be induced by finitely
perturbing the initial positions of the nodes so as to break the alignment
of any one of the three pairs (𝐦𝑗 ,𝐧𝑗 ); see Fig. 2. Letting (𝐳𝑗 , �̄�𝑗 ) be an
orthonormal basis where 𝐳𝑗 is parallel to 𝑎(𝐦𝑗 −𝐧𝑗 ), a weakly-distorted
lattice is characterized by

𝐦𝑗 = 𝐳𝑗 +
𝑤𝑗

𝑎
�̄�𝑗 +𝑂

(𝑤𝑗

𝑎

)2
, 𝐧𝑗 = −𝐳𝑗 +

𝑤𝑗

𝑎
�̄�𝑗 +𝑂

(𝑤𝑗

𝑎

)2
, |

|

|

𝑤𝑗
|

|

|

≪ 𝑎.

(27)

Second, we assume that the translational and rotational displace-
ments 𝐮𝑚,𝑛𝑖 and 𝜑𝑚,𝑛

𝑖 derive from slowly varying smooth functions 𝐮𝑖(𝐱)
and 𝜑𝑖(𝐱) upon replacing 𝐱 with 𝐱𝑚,𝑛, where the position variable 𝐱 is
identified as a slow variable attached to the structure, while 𝐮𝑖 and 𝜑𝑖
are fast scale variables attached to the unit cell in the long wavelength
limit, such as wavenumber 𝐪 → 𝟎. Then, the relevant field variables are
approximated by the leading-order Taylor expansions

𝐮𝑚+1,𝑛𝑖 − 𝐮𝑚,𝑛𝑖 = 𝜕1𝐮𝑖,

𝐮𝑚,𝑛+1𝑖 − 𝐮𝑚,𝑛𝑖 = 𝜕2𝐮𝑖,

𝜑𝑚+1,𝑛
𝑖 − 𝜑𝑚,𝑛

𝑖 = 𝜕1𝜑𝑖,
𝑚,𝑛 𝑚,𝑛+1

(28)
5

𝜑𝑖 − 𝜑𝑖 = 𝜕2𝜑𝑖,
where 𝜕𝑖 = ⟨𝐫𝑖,𝜟⟩ is the differential with respect to 𝐱 in direction 𝐫𝑖.
Then, the functions 𝐮𝑖 and 𝜑𝑖 are slowly varying in space if and only if
‖

‖

𝜕𝑖‖‖ ≪ 1.
Third, we assume that the translational and rotational displace-

ments 𝐮𝑚,𝑛𝑖 and 𝜑𝑚,𝑛
𝑖 are no longer necessarily static but can change

with respect to time at small angular frequency 𝜔 satisfying 𝜔 ≪
√

min(𝑘𝑠, 𝑘𝑙)∕max(𝑚𝑖, 𝐼𝑖).
At last, bending stiffness 𝑘𝑏 is much smaller than 𝑘𝑙𝑎2 and 𝑘𝑠𝑎2 so

that it can be understood as a second-order quantity (see Appendix B).

3.2. Asymptotic expansions

The compatibility relations are given by

𝐂 = 𝐂𝑙 + 𝐂𝓁 = 𝐂0 + 𝛿𝐂, (29)

where 𝐂 is the compatibility operator, 𝐂0 is its restriction to periodic
configurations over a regular lattice, and 𝛿𝐂 is its first-order correction.
𝐂0 is given by

𝐂0 = 𝐂𝑙0 + 𝐂𝓁0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝐳′1 𝐳′1 0 0

−𝐳′2 𝐳′2 0 0

−𝐳′3 𝐳′3 0 0

−�̄�′1 �̄�′1 −𝑎 − 𝓁∕2 −𝑎 − 𝓁∕2

−�̄�′2 �̄�′2 −𝑎 − 𝓁∕2 −𝑎 − 𝓁∕2

−�̄�′3 �̄�′3 −𝑎 − 𝓁∕2 −𝑎 − 𝓁∕2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (30)

The correction 𝛿𝐂 is composed of three terms 𝛿𝐂 = 𝛿𝑤𝐂 + 𝛿𝑥𝐂 +
𝛿 𝐂, the first of which is due to the perturbation that induces the
𝓁
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a
s

𝛿

T
o

e

−

regular-distorted phase transition:

𝛿𝑤𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟎 𝟎 𝑤1 −𝑤1

𝟎 𝟎 𝑤2 −𝑤2

𝟎 𝟎 𝑤3 −𝑤3

𝟎 𝟎 0 0

𝟎 𝟎 0 0

𝟎 𝟎 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (31)

nd the last two of which are due to the fields being slowly varying in
pace:

𝑥𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟎 𝟎 0 0

𝟎 𝐳′2𝜕2 0 0

𝟎 −𝐳′3𝜕1 0 0

𝟎 𝟎 0 0

𝟎 �̄�′2𝜕2 0 −𝑎𝜕2
𝟎 −�̄�′3𝜕1 0 𝑎𝜕1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (32)

and

𝛿𝓁𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟎 𝟎 0 0

𝟎 𝟎 0 0

𝟎 𝟎 0 0

𝟎 𝟎 0 0

𝟎 𝟎 0 −𝓁𝜕2∕2

𝟎 𝟎 0 𝓁𝜕1∕2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (33)

The motion equation then reads

− 𝐂′
𝑙𝐊𝐂Φ − 𝐄𝑏𝐊𝑏𝐂𝑏Φ + 𝐅 = −𝜔2𝐆Φ, (34)

where 𝐊 = diag(𝑘𝑙 , 𝑘𝑙 , 𝑘𝑙 , 𝑘𝑠, 𝑘𝑠, 𝑘𝑠) and 𝐆 = diag(𝑚1𝐈, 𝑚2𝐈, 𝐼1, 𝐼2). It is
worth mentioning that 𝐅 in Eq. (34) correspond to body force and
momentum and are taken to be slowly varying in space and of second-
order quantities. Displacements Φ can also be Taylor-expanded as

Φ = Φ0 + 𝛿Φ + 𝛿2Φ +⋯ , (35)

where Φ0 gathers the leading-order displacements, 𝛿Φ their first-order
corrections and so on. In the following, we derive an equation that
governs the leading-order displacements Φ0 thus interpreted as the
macroscopic motion equation of the hinged Kagome lattice. In order
to accomplish that, Eq. (34) will be solved to leading and first orders.

3.3. Leading and first order displacements

Keeping only leading-order terms in the motion equation (34) yields

−𝐂′
𝑙0𝐊𝐂0Φ0 = 𝟎. (36)

The solutions to this equation are periodic zero modes so that there
exists a vector 𝐔 and an angle 𝜑 such that

Φ0 = 𝐃𝐔 + 𝐓𝜑. (37)

Keeping the first-order terms in the motion equation (34) yields

−𝐂′
𝑙0𝐊𝐂0𝛿Φ−(𝛿𝑤𝐂+𝛿𝑥𝐂)𝐊𝐂0Φ0−𝐂′

𝑙0𝐊(𝛿𝑤𝐂+𝛿𝑥𝐂+𝛿𝓁𝐂)Φ0 = 𝟎. (38)

Therein, the term (𝛿𝑤𝐂+ 𝛿𝑥𝐂)𝐊𝐂0Φ0 vanishes as 𝐂0Φ0 = 𝟎. The above
equation (38) then can be simplified as

− 𝐂′
𝑙0𝐊𝐂0𝛿Φ +Ψ = 𝟎, Ψ = −𝐂′

𝑙0𝐊(𝛿𝑤𝐂 + 𝛿𝑥𝐂 + 𝛿𝓁𝐂)Φ0. (39)

Here matrix 𝐂𝑙0 being singular, the above equation (39) admits solu-
tions if and only if Ψ is balanced in the sense of being orthogonal to
all periodic zero modes
′ ′
6

𝐃 Ψ = 0, 𝐓 Ψ = 0. (40)
Accordingly, a solution 𝛿Φ exists and can be balanced once the term
Ψ has been put into the form

Ψ = 𝐆1𝝍1 +𝐆2𝝍2, (41)

where

𝐆1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝐳1 −𝐳2 −𝐳3
𝐳1 𝐳2 𝐳3
0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐆2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−�̄�1 −�̄�2 −�̄�3
�̄�1 �̄�2 �̄�3

−𝑎 − 𝓁∕2 −𝑎 − 𝓁∕2 −𝑎 − 𝓁∕2

−𝑎 − 𝓁∕2 −𝑎 − 𝓁∕2 −𝑎 − 𝓁∕2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(42)

given that 𝐂′
0 = [𝐆1 𝐆2]. A straightforward calculation then shows

that

𝝍1 = 𝑘𝑙

⎡

⎢

⎢

⎢

⎣

0

− ⟨𝐳2, 𝜕2𝐔⟩
⟨𝐳3, 𝜕1𝐔⟩

⎤

⎥

⎥

⎥

⎦

+ 2𝑘𝑙

⎡

⎢

⎢

⎢

⎣

𝑤1

𝑤2

𝑤3

⎤

⎥

⎥

⎥

⎦

𝜑, (43)

and

𝝍2 = 𝑘𝑠

⎡

⎢

⎢

⎢

⎣

0

− ⟨�̄�2, 𝜕2𝐔⟩
⟨�̄�3, 𝜕1𝐔⟩

⎤

⎥

⎥

⎥

⎦

+ 𝑘𝑠𝑎

⎡

⎢

⎢

⎢

⎣

0

𝜕2𝜑

−𝜕1𝜑

⎤

⎥

⎥

⎥

⎦

+
𝑘𝑠𝓁
2

⎡

⎢

⎢

⎢

⎣

0

𝜕2𝜑

−𝜕1𝜑

⎤

⎥

⎥

⎥

⎦

. (44)

Therefore, the solution is

𝛿Φ = Γ1𝝍1 + Γ2𝝍2, (45)

where

Γ1 =
1

𝑘𝑙 + 𝑘𝑠

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2
3
√

3
�̄�2

2
3
√

3
�̄�3

2
3
√

3
�̄�1

2
3
√

3
�̄�3

2
3
√

3
�̄�1

2
3
√

3
�̄�2

1 1 1

−1 −1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (46)

and

Γ2 =
1

𝑘𝑙 + 𝑘𝑠

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2
3
√

3
𝐳2

−2
3
√

3
𝐳3

−2
3
√

3
𝐳1

−2
3
√

3
𝐳3

−2
3
√

3
𝐳1

−2
3
√

3
𝐳2

− 𝑘𝑙+𝑘𝑠
6𝑘𝑠(𝑎+𝓁∕2)

− 𝑘𝑙+𝑘𝑠
6𝑘𝑠(𝑎+𝓁∕2)

− 𝑘𝑙+𝑘𝑠
6𝑘𝑠(𝑎+𝓁∕2)

− 𝑘𝑙+𝑘𝑠
6𝑘𝑠(𝑎+𝓁∕2)

− 𝑘𝑙+𝑘𝑠
6𝑘𝑠(𝑎+𝓁∕2)

− 𝑘𝑙+𝑘𝑠
6𝑘𝑠(𝑎+𝓁∕2)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (47)

It is worth mentioning that the first-order displacement 𝛿Φ is not
unique and can be modified by addition of an arbitrary periodic zero
mode 𝐃𝛿𝐔 + 𝐓𝛿𝜑. However, these two terms will play no further role
and can be set to zero with no loss of generality.

3.4. Macroscopic motion equation

Keeping the second-order terms in the equation of motion yields

−𝐂′
𝑙0𝐊𝐂0𝛿

2Φ − 𝐂′
𝑙0𝐊(𝛿𝑤𝐂 + 𝛿𝑥𝐂 + 𝛿𝓁𝐂)𝛿Φ − (𝛿𝑤𝐂 + 𝛿𝑥𝐂)′𝐊𝐂0𝛿Φ

− (𝛿𝑤𝐂 + 𝛿𝑥𝐂)′𝐊(𝛿𝑤𝐂 + 𝛿𝑥𝐂 + 𝛿𝓁𝐂)Φ0 − 𝐄𝑏𝐊𝑏𝐂𝑏Φ0 + 𝐅 = −𝜔2𝐆Φ0.

(48)

herein, we have omitted second-order corrections to the compatibility
perator as these will have no influence in the following.

A solution 𝛿2Φ exists if and only if the orthogonality conditions are
nforced. The first one reads

𝐃′(𝛿𝑤𝐂 + 𝛿𝑥𝐂)′𝐊𝐂0𝛿Φ − 𝐃′(𝛿𝑤𝐂 + 𝛿𝑥𝐂)′𝐊(𝛿𝑤𝐂 + 𝛿𝑥𝐂 + 𝛿𝓁𝐂)Φ0

− 𝐃′𝐄𝑏𝐊𝑏𝐂𝑏Φ0 + 𝐃′𝐅 = −𝜔2𝐃′𝐆Φ0.

(49)
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The second is

−𝐓′(𝛿𝑤𝐂 + 𝛿𝑥𝐂)′𝐊𝐂0𝛿Φ − 𝐓′(𝛿𝑤𝐂 + 𝛿𝑥𝐂)′𝐊(𝛿𝑤𝐂 + 𝛿𝑥𝐂 + 𝛿𝓁𝐂)Φ0

− 𝐓′𝐄𝑏𝐊𝑏𝐂𝑏Φ0 + 𝐓′𝐅 = −𝜔2𝐓′𝐆Φ0.

(50)

oth equations involve the leading-order displacements spanned by
ranslations 𝐔 and the twisting motion 𝜑 and can be interpreted as a
air of macroscopic motion equations. Next, these equations will be
ewritten in a form of strain and stress, and reveal the constitutive law
hat relates them.

.5. Microtwist continuum and its parity asymmetry

By injecting the related expressions in Section 3.2 into Eqs. (49) and
50), the motion equations of the microtwist continuum can be recast
nto the form

𝜔2𝜌𝐔 = 𝐅 + 𝛁 ⋅
(

𝐋 ∶ 𝛁𝑠𝐔 + 𝐁 ⋅ 𝛁𝜑 +𝐌𝜑
)

,

−𝜔2𝜂𝜑 = 𝜏 + 𝛁 ⋅
(

𝐁1 ∶ 𝛁𝑠𝐔 +𝐇 ⋅ 𝛁𝜑 + 𝐀𝜑
)

− 𝐌1 ∶ 𝛁𝑠𝐔 − 𝐀1 ⋅ 𝛁𝜑 −𝑄𝜑,

(51)

here 𝛁𝑠𝐔 is the symmetric part of the macroscopic displacement
radient, 𝛁𝜑 is the twisting gradient, the dots ⋅ and ∶ symbolize simple
nd double contraction of tensors and 𝛁⋅ is the divergence operator,
nd the effective tensors 𝐋, 𝐁, 𝐁1, 𝐀, 𝐀1, 𝐌, 𝐌1 and 𝐇 are obtained

in functions of the geometry parameters of the lattice and effective
stiffnesses of the hinge given in Appendix C. 𝜌 and 𝜂 are mass density
nd moment of inertia density

= 1
𝐴

∑

𝑖
𝑚𝑖, 𝜂 = 1

𝐴
∑

𝑖
𝐼𝑖, (52)

here 𝐴 = 6
√

3𝑎2 is the area of a unit cell. The vector–scalar pair (𝐅, 𝜏)
s the resultant force–torque acting on a unit cell per unit cell area,
hich read

= 1
𝐴

∑

𝑖
𝐅𝑖, 𝜏 = 1

𝐴
(𝑀2 −𝑀1). (53)

The macroscopic motion equation then can be written as the balance
quations

𝜔2𝜌𝐔 = 𝐅 + 𝛁 ⋅ 𝝈, −𝜔2𝜂𝜑 = 𝜏 + 𝛁 ⋅ 𝝃 + 𝑠, (54)

where 𝝈, 𝝃 and 𝑠 are second, first and zero-order tensorial stress
measures related to the strain measures 𝛁𝑠𝐔, 𝛁𝜑 and 𝜑 through the
macroscopic constitutive law

⎡

⎢

⎢

⎢

⎣

𝝈

𝝃

−𝑠

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐋 𝐁 𝐌
𝐁1 𝐇 𝐀
𝐌1 𝐀1 𝑄

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝛁𝑠𝐔
𝛁𝜑
𝜑

⎤

⎥

⎥

⎥

⎦

. (55)

hus, a 2D microtwist continuum with extra DOFs and additional
easures of strain, stress, and inertia have already been derived, which

an describe the global behavior of a hinged Kagome lattice in the
omogenization limit. It can be concluded that the effective tensors 𝐌,

𝐌1, 𝐀 and 𝐀1 are responsible for P-asymmetry because they are odd
functions of the 𝑤𝑗 . Following the approach as one in the spring–mass
model (Nassar et al., 2020a; Xia et al., 2021), the polarizaiton direction
which depends on the distortion parameters 𝑤𝑗 is given by

𝐏 = 1
2
∑

𝑗
sgn(𝑤𝑗 )𝐫𝑗 . (56)

It is worth noting here, the polarized mechanical behavior is immune
to spatially differences in the radius of curvature at the hinge and the
distortion of lattices, small and large, as long as the signs of distortion
parameters remain unchanged.
7

3.6. Dispersion relations

Having derived the equations of a microtwist continuum modeling
weakly-distorted Kagome lattices with elastic hinges, it is now to
inquire whether the continuum is faithful in its prediction of low-
frequency wave propagation and dispersion. We will focus on inves-
tigation of the first three fundamental wave branches based on the
assumption of the microtwist theory.

First, we conduct a numerical characterization of hinged lattices
in Figs. 3a and 3b using finite element analysis and Bloch periodic
boundary conditions (Details of the geometrical and material properties
in the calculation can be found in Appendix D). Dispersion relations
of the hinged regular lattice and polarized lattice II are presented
in Figs. 3c and 3d, respectively. Recall that dispersion relations of
regular Kagome lattices with idealized hinges feature zero-frequency
modes (Nassar et al., 2020a). Here, in contrast, as the elastic hinges
prevent the rigid triangles from rotating freely with respect to one
another, we do not find any zero-frequency modes except at zero wave
number 𝛤 . We then consider that plane waves are propagating through
the discrete Kagome lattices. There exists at specific frequencies 𝜔 and
wavenumbers 𝐪 solution to the dispersion relation

det
{[

𝐂𝑙(𝐪)′𝐊(𝐶𝑙(𝐪) + 𝐂𝓁(𝐪))
]

+ 𝐄𝑏(𝐪)𝐊𝑏𝐂𝑏(𝐪) − 𝜔2𝐆
}

= 0. (57)

The discrete Kagome lattice has six DOFs per unit cell so that there
are six solution frequencies for any given wavenumber 𝐪. At last, we
consider that an infinite microtwist continuum under a plane wave in
𝐱-direction, the dispersion relations are obtained by injecting transla-
tional displacements 𝐔 and the twisting angle 𝜑

𝐔(𝐱, 𝑡) = 𝐔0 exp(𝑖 ⟨𝐪, 𝐱⟩ − 𝑖𝜔𝑡), 𝜑(𝐱, 𝑡) = 𝜑0 exp(𝑖 ⟨𝐪, 𝐱⟩ − 𝑖𝜔𝑡), (58)

into Eq. (51) under zero resultant force–torque. Figs. 3c and 3d re-
spectively show the dispersion curves of regular lattice and polarized
lattice II (see Appendix A), predicted by employing the discrete (green
dotted lines) and microtwist (red dashed lines) models. Both plots show
the microtwist continuum produces three branches corresponding to
the coupled translational and rotational waves, and agrees well with
those given by the exact hinged and discrete models up to frequencies
comparable to the cutoff frequencies and those for small to medium
wavenumbers.

3.7. Zero modes

For the finite hinged Kagome lattice, we perform modal analy-
ses at lowest frequency (approximate zero) to investigate location or
distribution of zero modes in terms of the total displacement in two
types of hinged Kagome lattices: regular lattice and polarized lattice II
(see Appendix A). We then quantitatively compare the prediction from
the hinged lattice model with 47 × 11 unit cells in Figs. 4a and 4b and
the microtwist continuum model in Figs. 4c and 4d.

In the simulation, all the DOFs are fixed on the top and bottom
boundaries for the finite models shown in Fig. 4. From the comparison,
we can conclude that the developed microtwist continuum theorem is
capable of quantitatively capturing distribution of bulk and edge zero
modes for different hinged Kagome lattices: the regular Kagome lattice
only has bulk zero modes (Figs. 4a and 4c); the polarized Kagome
lattice II has asymmetric zero modes which is localized near the left
boundary and decays exponentially towards the bulk (Figs. 4b and 4d).
The emergence of polarization phenomenon is a symptom of the loss of
parity symmetry, which will be further validated and discussed in the
following section.

4. Experimental validation

The present section deals with an experimental validation of the

microtwist continuum model in Section 3, against the results of static
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Fig. 3. Examples of regular (a) and polarized (b) Kagome lattices, and of their respective dispersion diagrams (c) and (d). Blue solid, green dotted and red dashed lines correspond
to the dispersion relations of the hinged, discrete and microtwist modes, respectively. The inset show the first Brillouin zone with symmetry points 𝛤 , M and K of (a) and (b).
Note that the lattice parameters are (0, 0, 0, 0) in (a) and (−0.03,−0.03, 0.03, 0) in (b).
Fig. 4. Modal analyses of regular (a, c) and polarized (b, d) Kagome lattices and of their respective zero modes by employing the hinged lattice model (a, b) and the microtwist
continuum model (c, d). The top and bottom boundaries are fixed, while the left and right boundaries are free. The displacement magnitudes are normalized by the largest value
calculated in the mode field. Note that the lattice parameters are (0, 0, 0, 0) in (a) and (c), and (−0.03,−0.03, 0.03, 0) in (b) and (d). The red arrow show the polarization direction
of (b) and (d).
indentation and three-point bending tests on physical samples (Details
of the sample manufacturing, numerical simulation, and experiment
test can be found in Appendix D and Appendix E).

4.1. Parity asymmetric indentation responses

We first examine the indentation response of a regular plate along
the vertical direction shown in Fig. 5a by using a MTS Landmark
370 servo-hydraulic system. Samples comprising 28 × 31 triangles
are fixed on the left and right boundaries. Using a compression test
8

machine MTS, we indent the plate at the center of top/bottom bound-
ary by moving for a fixed distance and measure the reaction force.
Fig. 5b compares the experimental, numerical and microtwist force–
displacement responses of such sample, highlighting an overall sat-
isfactory agreement among the three methods. In order to further
qualitatively investigate the mechanical behavior in the regular lattice,
the static vertical displacement fields are extracted from the numerical
simulation of hinged model (Fig. 5c), the DIC measurement (Fig. 5d)
and the microtwist model (Fig. 5e). The three plots match satisfyingly
and validate the microtwist elasticity theory.
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Fig. 5. Calculated and measured results of regular Kagome lattice under indentation test. (a) Photograph of the regular plate sample under indentation test. (b) Measured and
calculated vertical displacements of triangles on the top row. Scale bar, 20 mm. The blue circles, blue crosses, solid blue lines result from the experimental measurement, numerical
simulation, and microtwist model, respectively. (c) Vertical displacement field from the numerical simulation of the hinged model. (d) Vertical displacement field from the DIC
measurement. (e) Vertical displacement field from the microtwist model.
Fig. 6. Calculated and measured results of Polarzied Kagome lattice I (a) and II (b) under indentation test. Orange (blue) symbols denote the data obtained from the indentation
test on the top (bottom) boundary. The circles, crosses, solid lines result from the experimental measurement, numerical simulation, and microtwist model, respectively.
We then perform static indentation tests on two opposing bound-
aries of finite polarized lattices I and II to demonstrate difference in
their mechanical responses and the emergence of P-asymmetric effects.
Figs. 6a and 6b show the asymmetric indentation responses, which
have the excellent agreement among the numerical simulations, the
experimental tests and the microtwist theory. Also by comparing these
two plots, it should be interesting to mention that the stiffness bias
of the hard and soft boundaries is significantly increased with the
increase of the distortion parameters. It illustrates the potential benefit
of incorporating distortion parameters into designs of configurable
P-asymmetric materials.

4.2. Parity asymmetric bending behaviors

Thus far, we have demonstrated P-asymmetry in the polarized mi-
crotwist medium under indentation. However, it should be noted that
9

this property is not limited to this loading condition. To this end, we
now examine the elastic response of the polarized beam II under three-
point bending test, as shown in Fig. 7 (Elastic responses of the regular
beam and the polarized beam I can be found in Appendix F). Using test
machine MTS, the polarized beam is mounted in a three-point bending
configuration and a 50 N loading is applied at the top center of the
lattice. We then use DIC system to measure the vertical displacements
of triangles on the top row. The resulting data is shown in Fig. 7b,
where the vertical displacements are plotted against the horizontal
coordinate 𝑥. Our experimental measurement, numerical simulation
and microtwist model demonstrate that there exists an asymmetric
bending curve in the polarized lattice-based beam. We further plot the
vertical displacement field by extracting from the numerical simulation
(Fig. 7c), the DIC measurement (Fig. 7d) and the microtwist model
(Fig. 7e). These three plots have good agreement and demonstrate
polarized responses in the microtwist medium as well.
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Fig. 7. Calculated and measured results of the Polarzied beam II under three-point bending test with 50 N loading. (a) Photograph of the beam sample under three-point bending
test. Scale bar, 20 mm. (b) Measured and calculated vertical displacements of triangles on the top row. The blue circles, blue crosses, solid blue lines result from the experimental
measurement, numerical simulation, and microtwist model, respectively. (c) Vertical displacement field from the numerical simulation of the hinged model. (d) Vertical displacement
field from the DIC measurement. (e) Vertical displacement field from the microtwist model.
5. Exotic behavior under static and dynamic loadings

Microtwist media with zero modes can also posses exotic behavior
due to the microtwisting under static and dynamic loadings that cannot
be observed in conventional elasticity. In this section, we will inves-
tigate nonuniform static deformations and parity asymmetric surface
wave propagation in weakly-distorted hinged Kagome lattices. Results
are derived from the numerical simulation of hinged models and the
microtwist model.

5.1. Nonuniform deformations under complex static loadings

We consider a distorted Kagome plate with lattice parameters
(𝑥1, 𝑥2, 𝑥3, 𝑧) = (0.05, 0.05, 0.05, 0), as shown in Fig. 8a. Four constant
displacements (red arrows, |𝑢𝑥| = |𝑢𝑦| = 20 mm) are prescribed at four
corners as global ‘‘pure shear’’ via compression along one direction
and expansion along the other. Figs. 8b and 8c respectively present
the horizontal and vertical displacement profiles calculated by the
hinged lattice model (left), the microtwist continuum (middle) and
the Cauchy continuum (right; Details of Cauchy continuum can be
found in Appendix G). The displacement components 𝑈𝑥 and 𝑈𝑦 from
the Cauchy continuum are symmetrically distributed. However, the
displacement patterns predicted from the hinged model and the mi-
crotwist continuum are no longer symmetrically distributed. Therefore,
the microtwist continuum theory is able to accurately capture the
displacement components by considering the contribution from the
microtwisting while the conventional Cauchy theory fails.

5.2. Parity asymmetric surface wave distribution

As one application of zero modes in elastic hinged Kagome lattices,
we also study polarized surface propagation on the free boundary of
the microtwist medium. These parity asymmetric surface modes in the
finite microtwist medium present a new class of surface waves have
not been explored in the theories of conventional elasticity. To this
end, we conduct a complete numerical characterization of a polarized
Kagome lattice with parameters (𝑥1, 𝑥2, 𝑥3, 𝑧) = (−0.03,−0.03, 0.03, 0).
In the simulation, the supercell is composed of a 2 × 17 array of
unit cells and is terminated by a free boundary at the top and bottom
10
and Floquet–Bloch boundary conditions along the 𝑥 direction. Fig. 9a
shows the dispersion diagram resulting from the numerical simulation
of hinged model (blue solid lines) and microtwist model (red circles).
We recognize the emergence of two new branches lower than the
dispersive region of the lowest bulk band (gray area). It agrees well
with the two lowest dispersion curves given by the exact hinged model
and the microtwist model and a discrepancy between these two models
is found in a relative higher frequency regime. This is understandable
because the assumptions of the perturbation approach are used; see
Section 3.1. The mode shapes shown in Figs. 9b and 9c, calculated
along the lowest two branches, feature parity asymmetric distribution
at one soft boundary as expected by the polarization direction, because
a significant amount of displacement is observed at the soft side. This
result qualifies these branches as edge modes and characterizes the
upper edge as the soft boundary, consistent with the polarization vector
predictions. It is worth stressing that the edge modes evolving from
zero-frequency modes of the topological polarized Kagome lattice are
different from those in the dynamic regime (Ma et al., 2019). The
fact that the microtwist media feature parity-asymmetric surface wave
distribution constitutes an interesting departure from the conventional
case of Rayleigh waves in the Cauchy medium. Finally, it is of interest
to explore the tunable parity asymmetric surface waves in microtwist
media under the external stimulus, such as mechanical (Chen et al.,
2021) and electrical (Li et al., 2021; Zhou et al., 2020) loads.

6. Conclusion

In this paper, we develop a microtwist elasticity theory of hinged
Kagome lattices to capture the polarized mechanical behavior by mod-
eling the hinge as a flexible beam. Performance of the proposed theory
is validated against the exact hinged lattice model in a number of
problems including predicting the dispersion relations and the parity
asymmetric distribution of zero modes. Furthermore, experimental and
numerical validations on the polarized indentation and bending re-
sponses are provided for the first time. At last, we demonstrate exotic
behavior of the microtwist medium under nonuniform boundary defor-
mations and parity asymmetric surface wave propagation. We believe
the theory opens new pathways for the designs of hinged metamaterials

in the linear regime to capture the polarized behavior. We also hope to
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Fig. 8. Nonuniform deformations under complex loading conditions. (a) Applying fixed deformations (red arrows, |𝑈𝑥| = |𝑈𝑦| = 20 mm) at four corners of the pre-twisted Kagome
lattice. (b) Horizontal displacement fields, 𝑈𝑥. (c) Vertical displacement fields, 𝑈𝑦. Left, middle and right correspond to the hinged, microtwist and Cauchy models.
Fig. 9. (a) Dispersion diagram for a supercell under free boundary conditions at the top and bottom and periodic boundary conditions in the 𝑥 direction. The lattice parameters
are (−0.03,−0.03, 0.03, 0) and the polarization direction is towards the top boundary. The solid blue lines and red circles result from the hinged and microtwist model, respectively.
The gray areas are bulk bands, while the lowest two branches are surface wave bands. (b, c) Surface mode shapes of the supercell for the lowest two branches result from the
microtwist (left) and hinged (right) models. The displacement magnitudes are normalized by the largest value calculated in the wave field.
see in the near future that the microtwist theory could be generalized
by taking the geometrical and material nonlinearities into account, and
11
will be applied to strongly distorted lattices with soft or soft and hard
mixed materials.
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Fig. A.1. Kagome lattice model. (a) An annotated lattice; (b) Regular lattice (0, 0, 0, 0); (c) Polarized lattice I (−0.01,−0.01, 0.01, 0); (d) Polarized lattice II (−0.03,−0.03, 0.03, 0). Red
arrows show the polarization direction, 𝐏 = 𝐫3.
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Appendix A. Characterization of Kagome lattices

For the lattice characterization, we use the description in (Kane and
Lubensky, 2014). The Kagome lattice in Fig. A.1 are defined by its
Bravais lattices with primitive lattice vectors

𝐫𝑗 = 2𝐿
(

cos
2𝑗 − 3

3
𝜋, sin

2𝑗 − 3
3

𝜋
)

, 𝑗 ∈ {1, 2, 3}, (A.1)

where 𝐿 is the half of lattice constant. The unit cells are described by
four parameters (𝑥1, 𝑥2, 𝑥3, 𝑧), where 𝑥𝑗 and 𝑧 denote the buckling of
the line of bonds along 𝐫𝑗 and the asymmetry in the sizes of the two
triangles, respectively. The lattice sites are then obtained as follows:

𝐩1 = 𝐫1∕2 + 𝐬2,
𝐩2 = 𝐫2∕2 − 𝐬1,
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𝐩3 = 𝐫3∕2,
where 𝐬𝑗 denotes the displacement of 𝐩𝑗−1 relative to the midpoint of
the line along 𝐫𝑗 and can be described by

𝐬1 = 𝑥1(𝐫3 − 𝐫2) + 𝑦1𝐫1,
𝐬2 = 𝑥2(𝐫1 − 𝐫3) + 𝑦2𝐫2,
𝐬3 = 𝑥3(𝐫2 − 𝐫1) + 𝑦3𝐫3,

(A.2)

with
𝑦1 = 𝑧∕3 + 𝑥3 − 𝑥2,

𝑦2 = 𝑧∕3 + 𝑥1 − 𝑥3,

𝑦3 = 𝑧∕3 + 𝑥2 − 𝑥1.

(A.3)

In this paper, three Kagome lattices are chosen: regular lattice
(0, 0, 0, 0) in Fig. A.1b, polarized lattice I (−0.01,−0.01, 0.01, 0) in
Fig. A.1c, and polarized lattice II (−0.03,−0.03, 0.03, 0) in Fig. A.1d.
Note that the red arrows in Figs. A.1c and A.1 d are polarization
vectors (Kane and Lubensky, 2014). Note also, that for the weakly-
distorted Kagome lattices 𝑤𝑗 = sgn(𝑥𝑗 )

‖

‖

‖

𝐬𝑗
‖

‖

‖

∕
√

3.

Appendix B. Characterization of hinge deformation

In the limit that 𝑤0 ≪ 𝐿, the hinge will become very flexible
compared to the stiff triangle pieces. Therefore, the large triangle
elements are approximated as rigid bodies and all strain deformation is
assumed to take place at the hinges. We then refer to the elastic hinge
between two triangles as a beam with varying cross-section areas, as
shown in Fig. A.2 (Day et al., 1992; Coulais, 2016; Liang and Crosby,
2020). Here, the stretching of beam is governed by a stretching stiffness
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Fig. A.2. Three deformation modes of the hinge. (a) Stretching; (b) Pure Shear; (c) Pure Bending.

Fig. A.3. Photograph of three samples for indentation tests. (a) Regular plate with lattice parameters (0, 0, 0, 0); (b) Polarized plate I with lattice parameters (−0.01,−0.01, 0.01, 0);
(c) Polarized plate II with lattice parameters (−0.03,−0.03, 0.03, 0). Red arrows show the polarization vectors towards the top boundary. Scale bars, 20 mm.

Fig. A.4. Photograph of three samples for three-point bending tests. (a) Regular beam with lattice parameters (0, 0, 0, 0); (b) Polarized beam I with lattice parameters
(−0.01,−0.01, 0.01, 0); (c) Polarized beam II with lattice parameters (−0.03,−0.03, 0.03, 0). Red arrows show the polarization vectors towards the left boundary. Scale bars, 20 mm.
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Fig. A.5. Experimental setup for the static test. The indentation and three-point bending loadings are supplied by the MTS system, and the displacement fields are measured by
the DIC system.
𝑘𝑙; the pure shear of beam is governed by a shear stiffness 𝑘𝑠; and
the pure bending of beam is governed by a bending stiffness 𝑘𝑏. Note
that these elastic stiffnesses are independent and can be obtained by
applying three sorts of boundary conditions depicted in Fig. A.2, which
can be expressed as (Liang and Crosby, 2020)

𝑘𝑙 =
𝐸ℎ
𝜋

√

𝑤0
𝑟
, 𝑘𝑠 =

𝐸ℎ
3𝜋

(𝑤0
𝑟

)

3
2 , 𝑘𝑏 =

2𝐸ℎ
9𝜋

𝑟2
(𝑤0

𝑟

)

5
2 , (B.1)

where ℎ is the thickness of lattice, 𝑤0 = 2𝑟
(

1
cos 𝜋

6
− 1

)

= 0.62 mm,

𝑘𝑙 = 5.55 × 107 N∕m, 𝑘𝑠 = 5.72 × 106 N∕m, 𝑘𝑏 = 4.72 N ⋅m. As such,
bending stiffness 𝑘𝑏 is much smaller than 𝑘𝑙𝑎2 and 𝑘𝑠𝑎2 so that it can
be understood as a second-order quantity.

To quantify the energy of hinge deformation, we recall compatibility
Eqs. (5), (6) and (7), where the stretching and shear deformation gives
𝛥𝑙𝑗 ∼ 𝛥𝑠𝑖 ∼ 𝑎𝜑𝑗 , and the bending deformation yields 𝛥𝜃𝑗 ∼ 𝜑𝑗 . Here, we
ignore the unit cell index (𝑚, 𝑛). Consequently, the stored elastic energy
due to bending deformation in the ligament is much smaller than those
due to stretching and shear deformation, that is

𝑘𝑏𝛥
2
𝜃𝑗

≪ min{𝑘𝑙𝛥2
𝑙𝑗
, 𝑘𝑠𝛥

2
𝑠𝑗
}. (B.2)

Appendix C. Effective tensors

The involved effective tensors in Eq. (51) are given by

𝐋 = 𝑎2

𝐴

{

12𝑘𝑙(𝐳2̄332̄ + 𝐳3̄223̄) + 12𝑘𝑠(𝐳2̄3̄3̄2̄ + 𝐳3̄2̄2̄3̄)

+
𝑘2𝑙 (−8𝐳3̄223̄ − 4𝐳3̄232̄ − 4𝐳2̄323̄ − 8𝐳2̄332̄)
14

𝑘𝑙 + 𝑘𝑠
+
𝑘𝑙𝑘𝑠

𝑘𝑙 + 𝑘𝑠
(4
√

3𝐳3̄2̄32̄ − 4
√

3𝐳2̄3̄23̄ − 4
√

3𝐳3̄23̄2̄ + 4
√

3𝐳2̄32̄3̄)

+
𝑘𝑠

𝑘𝑙 + 𝑘𝑠
[ − 4(𝑘𝑙 + 3𝑘𝑠)𝐳3̄2̄2̄3̄ + 4𝑘𝑙𝐳3̄2̄3̄2̄ + 4𝑘𝑙𝐳2̄3̄2̄3̄

− 4(𝑘𝑙 + 3𝑘𝑠)𝐳2̄3̄3̄2̄]
}

, (C.1)

𝐁 = 𝑎2

𝐴

{

− 12𝑎𝑘𝑠(𝐳3̄2̄3̄ + 𝐳2̄3̄2̄) − 6𝓁𝑘𝑠(𝐳3̄2̄3̄ + 𝐳2̄3̄2̄) +
4
√

3𝑘𝑙𝑘𝑠𝑎
𝑘𝑙 + 𝑘𝑠

(𝐳3̄22̄ − 𝐳2̄33̄)

+
2
√

3𝑘𝑙𝑘𝑠𝓁
𝑘𝑙 + 𝑘𝑠

(𝐳3̄22̄ − 𝐳2̄33̄) +
𝑘𝑠𝑎

𝑘𝑙 + 𝑘𝑠
[4(𝑘𝑙 + 3𝑘𝑠)𝐳3̄2̄3̄ − 4𝑘𝑙𝐳3̄2̄2̄

− 4𝑘𝑙𝐳2̄3̄3̄ + 4(𝑘𝑙 + 3𝑘𝑠)𝐳2̄3̄2̄] +
𝑘𝑠𝓁

𝑘𝑙 + 𝑘𝑠
[2(𝑘𝑙 + 3𝑘𝑠)𝐳3̄2̄3̄ − 2𝑘𝑙𝐳3̄2̄2̄

− 2𝑘𝑙𝐳2̄3̄3̄ + 2(𝑘𝑙 + 3𝑘𝑠)𝐳2̄3̄2̄]
}

, (C.2)

𝐁1 =
𝑎3

𝐴

{

− 12𝑘𝑠(𝐳3̄2̄3̄ + 𝐳2̄3̄2̄) +
4
√

3𝑘𝑙𝑘𝑠
𝑘𝑙 + 𝑘𝑠

(𝐳3̄32̄ − 𝐳2̄23̄)

+
𝑘𝑠

𝑘𝑙 + 𝑘𝑠
[4(𝑘𝑙 + 3𝑘𝑠)𝐳3̄2̄3̄ − 4𝑘𝑙𝐳3̄3̄2̄ − 4𝑘𝑙𝐳2̄2̄3̄

+ 4(𝑘𝑙 + 3𝑘𝑠)𝐳2̄3̄2̄]
}

,

(C.3)

𝐇 = 𝑎3

𝐴

{

12𝑎𝑘𝑠(𝐳2̄2̄ + 𝐳3̄3̄) + 6𝓁𝑘𝑠(𝐳2̄2̄ + 𝐳3̄3̄)

−
4𝑘𝑠𝑎
𝑘𝑙 + 𝑘𝑠

[

(𝑘𝑙 + 3𝑘𝑠)𝐳3̄3̄ − 𝑘𝑙𝐳3̄2̄ − 𝑘𝑙𝐳2̄3̄ + (𝑘𝑙 + 3𝑘𝑠)𝐳2̄2̄
]

−
2𝑘𝑠𝓁
𝑘𝑙 + 𝑘𝑠

[

(𝑘𝑙 + 3𝑘𝑠)𝐳3̄3̄ − 𝑘𝑙𝐳3̄2̄ − 𝑘𝑙𝐳2̄3̄ + (𝑘𝑙 + 3𝑘𝑠)𝐳2̄2̄
]

}

,

(C.4)
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Fig. A.6. Static responses of regular (a-d) and polarized I (e-h) beams under three-point bending tests with 50 N loading. (a, e) Measured and calculated vertical displacements
of triangles on the top row. (b, f) Vertical displacement field from the numerical simulation of the hinged model. (c, g) Vertical displacement field from the DIC measurement.
(d, h) Vertical displacement field from the microtwist model. The blue circles, blue crosses, solid blue lines result from the experimental measurement, numerical simulation, and
microtwist model, respectively.
𝐌 = 𝑎
𝐴

{

4
√

3𝑘𝑙(𝑤2𝐳3̄2 −𝑤3𝐳2̄3)

+
2𝑘2𝑙

𝑘𝑙 + 𝑘𝑠

[

−2
√

3(−
𝑤1
3

+
2𝑤2
3

−
𝑤3
3

)𝐳3̄2

+2
√

3(−
𝑤1
3

−
𝑤2
3

+
2𝑤3
3

)𝐳2̄3
]

+
4𝑘𝑙𝑘𝑠
𝑘𝑙 + 𝑘𝑠

[

(𝑤1 −𝑤3)𝐳3̄2̄ + (𝑤1 −𝑤2)𝐳2̄3̄
]

}

,

(C.5)

𝐌1 =
𝑎
𝐴

{

4
√

3𝑘𝑙(𝑤2𝐳23̄ −𝑤3𝐳32̄)

+
2𝑘2𝑙

𝑘𝑙 + 𝑘𝑠

[

2
√

3(
𝑤1

3
−

2𝑤2

3
+

𝑤3

3
)𝐳23̄ − 2

√

3(
𝑤1

3
+

𝑤2

3
−

2𝑤3

3
)𝐳32̄

]

+
4𝑘𝑙𝑘𝑠
𝑘𝑙 + 𝑘𝑠

[

(𝑤1 −𝑤3)𝐳2̄3̄ + (𝑤1 −𝑤2)𝐳3̄2̄
]

}

, (C.6)

𝐀1 =
4𝑘𝑙𝑘𝑠𝑎2

(𝑘𝑙 + 𝑘𝑠)𝐴
[

(𝑤2 −𝑤1)𝐳2̄ + (𝑤3 −𝑤1)𝐳3̄
]

, (C.7)

𝐀2 =
𝑎
𝐴

{

4𝑘𝑙𝑘𝑠𝑎
𝑘𝑙 + 𝑘𝑠

[

(𝑤1 −𝑤2)𝐳2̄ + (𝑤1 −𝑤3)𝐳3̄
]

+
2𝑘𝑙𝑘𝑠𝓁
𝑘𝑙 + 𝑘𝑠

[

(𝑤1 −𝑤2)𝐳2̄ + (𝑤1 −𝑤3)𝐳3̄
]

}

,
(C.8)

𝑄 = 1
𝐴

[

12𝑘𝑏 + 4𝑘𝑙(𝑤2
1 +𝑤2

2 +𝑤2
3)

−
8𝑘2𝑙

3(𝑘𝑙 + 𝑘𝑠)
(𝑤2

1 +𝑤2
2 +𝑤2

3 −𝑤1𝑤2 −𝑤2𝑤3 −𝑤3𝑤1)
]

,
(C.9)

where 𝐳𝑝𝑞𝑟𝑠 = 𝐳𝑝⊗𝐳𝑞⊗𝐳𝑟⊗𝐳𝑠 are tensors. Note that again a superimposed
bar symbolizes a plane rotation of 𝜋∕2, such as 𝐳 = �̄� ⊗ �̄� .
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Appendix D. Sample preparation and experimental setup

The experimental samples in Figs. A.3 and A.4 are fabricated by a
fiber laser-cutting machine. The Kagome lattices consisting of rigid tri-
angles connected by elastic hinges are made of steel (Young’s modulus
𝐸 = 209 GPa, Poisson’s ratio 𝜈 = 0.269, density 𝜌 = 7890 kg∕m3). The
sample dimensions and main geometrical parameters are the following:
length of lattice vector 𝑑 = 20 mm, side length of triangles 𝐿 = 10 mm,
thickness ℎ = 1.5 mm, fillet radius of hexagonal holes 𝑟 = 2 mm. A
reflective mirror spray paint is applied to the samples, enhancing its
ability to reflect the bright lights required for short camera exposures.

Fig. A.5 shows the experimental setup. Samples are tested using
an MTS Landmark 370 servo-hydraulic system (MTS, Eden Prairie,
Minnesota, USA). To produce results comparable to the numerical
simulations under static loading, the testing speed is controlled by a
constant cross head speed of 0.001 mm∕s. In addition, the 3D Digital
Image Correlation (DIC) System Q-400 (Dantec Dynamics, Tonsbakken,
Skovlunde, Denmark) is used for displacement field measurements.

Appendix E. Numerical simulations

The finite-element method simulations in this work are all per-
formed using the commercial software COMSOL Multiphysics and lin-
ear elasticity is used as a material model, with Young’s modulus 𝐸 =
209 GPa, Poisson’s ratio 𝜈 = 0.269, density 𝜌 = 7890 kg∕m3 in
plane stress conditions. Eigenfrequency calculations within the ‘‘Solid
Mechanics module’’ are carried out to find the dispersion relations in
Figs. 3 and 9, and distribution of zero modes in Fig. 4. Large-scale
simulations are then implemented by the ‘‘Solid Mechanics module’’
and stationary calculations are performed to obtain the displacement
fields in Figs. 5–8 and A.6.
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Appendix F. Additional numerical and experimental results

In this section, we examine elastic responses of the regular beam
and the polarized beam I under three-point bending test, as shown
in Fig. A.6. Using test machine MTS, these two beams are mounted
in a three-point bending configuration and a 50 𝑁 loading is applied
t the top center of the lattice. Our experimental measurement, nu-
erical simulation and microtwist model demonstrate that there exists
symmetric bending curve in the regular beam (Fig. A.6a) while

n asymmetric bending curve in the polarized beam (Fig. A.6b). By
omparing Fig. 7b, Fig. A.6a and Fig. A.6b, it should be interesting
o mention that the degree of symmetry is significantly increased with
he increase of the distortion parameters. We further plot the vertical
isplacement field of the regular beam (resp. polarized beam I) by
xtracting from the numerical simulation in Fig. A.6b (resp. Fig. A.6f),
he DIC measurement in Fig. A.6c (resp. Fig. A.6g) and the microtwist
odel in Fig. A.6d (resp. Fig. A.6h). These three plots have good

greement and further validate the microtwist elasticity theory.

ppendix G. Cauchy continuum

Consider a periodic lattice undergoing a uniform macroscopic strain
, with respect to the Cauchy–Born hypothesis (Born et al., 1955;
utchinson and Fleck, 2006; Phani and Hussein, 2017), the displace-
ent field is the summation of two parts: the linear deformation

btained by a macroscopic strain and the periodic displacement field
f each unit cell. Accordingly, the displacement filed is expressed as:
𝑚,𝑛
𝑖 = 𝐄 ⋅ 𝐱𝑚,𝑛𝑘 + 𝛥𝐮𝑚,𝑛𝑖 . (G.1)

ere, the rotation gradients are ignored, 𝛁𝜑 = 𝟎, and the extra
tress 𝑠 = 0. Then, our microtwist continuum reduces to the Cauchy
ontinuum, where the twisting motion 𝜑 is given by

= −
𝐌1 ∶ 𝛁𝑠𝐔

𝑄
, 𝑄 ≠ 0, (G.2)

and the constitutive relationship is recast into the form

𝝈 = 𝐂∗ ∶ 𝛁𝑠𝐔, 𝐂∗ = 𝐂 − 1
𝑄
𝐌⊗𝐌1. (G.3)

y comparing Eqs. (55) and (G.3), it is seen that the Cauchy–Born
ypothesis greatly simplifies the constitutive law. However, it dismisses
he possibility of there being any coupling between the macroscopic
train and the rotation gradient. Taking this coupling into account
ill significantly improve the quality of the predictions of the ef-

ective medium theory; quantitative demonstrations are presented in
ection 5.1.
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