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Realization of active metamaterials with odd
micropolar elasticity
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Materials made from active, living, or robotic components can display emergent properties
arising from local sensing and computation. Here, we realize a freestanding active metabeam
with piezoelectric elements and electronic feed-forward control that gives rise to an odd
micropolar elasticity absent in energy-conserving media. The non-reciprocal odd modulus
enables bending and shearing cycles that convert electrical energy into mechanical work, and
vice versa. The sign of this elastic modulus is linked to a non-Hermitian topological index that
determines the localization of vibrational modes to sample boundaries. At finite frequency,
we can also tune the phase angle of the active modulus to produce a direction-dependent
bending modulus and control non-Hermitian vibrational properties. Our continuum approach,
built on symmetries and conservation laws, could be exploited to design others systems such
as synthetic biofilaments and membranes with feed-forward control loops.
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esponsive materials in both biology and engineering dis-

tinguish themselves by their ability to respond to external

stimuli in tailored ways!~7. For example, muscles contract
in response to electrical signals® and mechanocaloric solids
undergo dramatic deformations in response to temperature
changes®. Unlike computers or multicellular organisms with
specialized functional components, the undifferentiated physical
machinery available in a distributed material presents unique
challenges for sensing, information processing, and response. Yet,
the range of available functionalities is fundamentally extended
when the materials possess distributed, local reservoirs of
energy®10-19. Such active materials exhibit responses not allowed
by their passive, or energy conserving, counterparts.

Activity is intimately connected, but not equivalent, to a family
of material symmetries collectively known as reciprocity20-28,
Here we distinguish between two notions of reciprocity relevant
for the design of mechanical metamaterials. The first notion is a
generalization of Newton’s third law, which states that the forces
between any two components of a mechanically isolated system
must be equal and opposite. This notion of reciprocity can be
formulated for other generalized momenta, such as angular
momentum. Mechanical systems that violate this version of
reciprocity must fundamentally be in contact with an external
medium, such as a substrate or a background fluid, to act as a
momentum sink. For systems described by a Lagrangian or
Hamiltonian, translational (or rotational) symmetry gives rise to
conservation of linear (or angular) momentum. Hence, systems
with translational symmetry that violate this first notion of reci-
procity must either be dissipative, driven, or active.

A second conceptually distinct notion of reciprocity is known
as Maxwell-Betti reciprocity, which can be roughly defined as the
symmetry between perturbation and response. When a
mechanical system is deformed, the work done can schematically
be written as dW = >_,0,du,. Here, u, is a short hand notation
for mechanical degrees of freedom such as displacements, rota-
tions or strains, and o, labels the conjugate forces, moments or
stresses. For small perturbations about an undeformed state, we
may write o, = M_u,. A generic medium is said to obey
Maxwell-Betti reciprocity if and only if M, is symmetric, ie.
My, = M,,. As long as the system’s linear response obeys
Maxwell-Betti reciprocity, the forces can be derived from
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gradients of an energetic potential V =3M ,u,u,. However, if
the linear response of the medium Vlolates Maxwell—Betti reci-
procity, the internal energy is no longer a function of the coor-
dinates u,. In other words, the medium can perform nonzero
work along a closed cycle of deformations?’. Such a medium
necessarily contains non-conservative forces that require an
internal or external source of energy to be present.

While Maxwell-Betti reciprocity and momentum conservation
are distinct, one can certainly design and build mechanical sys-
tems that harness linear or angular momentum sources to achieve
violations of Maxwell-Betti reciprocity’-202°, Such approaches,
however, inherently involve mechanical coupling to an external
medium. Here we take an alternative route. We explore the case
where 0, represents shear and moment stresses, which conserve
currents of linear and angular momentum. In this case u,
represents geometric deformations and M, represents the stiff-
ness matrix containing all of the material’s elastic moduli. We
refer to the antisymmetric components (M, — M,,)/2 as odd
elasticity?”-30-32. A material displaying odd elasticity must violate
Maxwell-Betti reciprocity, though it needs not rely on external
sources of linear or angular momentum.

Recent advances in metamaterial design and prototyping have
utilized active components to achieve functionalities such as
sensing, lasing, and cloaking!0-1215 frequency dependent
reflectivity?3, unidirectional wave amplification”343%, energy
harvesting!®, and analog computation!”. Nonetheless, all the
active non-reciprocal metamaterials so-far realized exhibit either
of the following fundamental limitations: the active non-
reciprocal effects either vanish from the linear response in the
quasistatic limit33 or they require the presence of background
sources of linear or angular momentum’-2%36, As a result, their
functionalities are largely restricted to finite-frequency control or
fundamentally require the sample to be in contact with an
additional medium that acts as a momentum sink or source.

Here, we report the design, construction, and experimental
demonstration of a freestanding metamaterial whose elasticity is
unattainable in passive media (Fig. la-d). The metamaterial is
constructed with piezoelectric elements3’~4¢ mounted on a beam
and controlled by electrical circuits. Our approach enables an
asymmetric coupling between bending and shearing in micro-
polar solids*”+48. This results in an odd micropolar material that

Shear 0, h — @

Fig. 1 Design and mechanics of an odd micropolar metabeam. a A single unit cell featuring three piezoelectric patches mounted on a beam: one that acts
as a sensor, and two that act as actuators. b A segment of the full metabeam. ¢ Each unit cell has an electronic loop. The voltage V; induced by the central

piezoelectric is fed into a transfer function H(w) =

V(w)/Vs(w) that sends opposing voltages V, and —V, to the piezoelectric actuators. d A photograph of

the metabeam (horizontal) with the electronic circuits in the foreground. We note that the mechanical forces from the attached wires are negligible. The
wires act only as sources of energy and computation, but not of linear or angular momentum. e The motion of the metabeam can be described by two
independent fields, ¢ and h, which parameterize the angular and vertical displacements of the metabeam. Notice that under a reflection about the z-axis,
we have ¢ - —¢ and h — h. f When the beam bends, the center piezoelectric is stretched. g The antisymmetric electronic actuation then gives rise to a

shearing stress proportional to the modulus P.
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simultaneously breaks parity and Maxwell-Betti reciprocity. The
spectrum of the metabeam exhibits a non-Hermitian topological
index which results in the localization of vibrational modes at
sample boundaries. We experimentally show the resulting uni-
directional amplification/attenuation of waves propagating
through the metamaterial. Our work sheds light on controlling
non-reciprocal elasticity in artificial materials.

Results

Design of the active metamaterial. The metamaterial we design
takes the form of a thick beam, whose shape is characterized by two
independent degrees of freedom (Fig. le): the height h(x) of the
midplane and the angle ¢(x) of the cross section with respect to the
vertical. A single unit cell in the beam is equipped with three pie-
zoelectric patches that enable shape-sensing and response. The cen-
tral patch acts as a sensor that acquires a voltage proportional to the
elongation or contraction of the top surface (Fig. 1f). The piezo-
electric patches at the front and back of the unit cell serve as
mechanical actuators that elongate and contract in response to an
applied voltage®>0, A transfer function H(w) processes the input
voltage from the central patch and sends output signals to the
actuating patches (Fig. 1c). For each unit cell, we implement H(w)
using a minimal electrical circuit (Fig. 1d). The electronics only
couple piezoelectric patches within a single unit cell, thereby creating
a control system that is both local and decentralized. The resulting
system only needs to be connected to a voltage or, more generally,
energy source. One practical advantage of this approach is that the
voltage or power source can easily be housed inside the medium
itself.

The active metamaterial we design is freestanding—it does not
push or pull on an external medium. Indeed, it obeys Newton’s
third law by preserving both angular and linear momentum as a
traditional beam. However, the crucial difference between a
traditional beam and the one we construct is the presence of
internal energy sources. We design the feedback such that when
the central patch experiences elongation or compression due to
bending of the beam, the electronic loop produces output voltages
that are antisymmetric (Fig. 1c), resulting in shear stresses
(Fig. 1g). However, the ensuring shear strain does not stretch or
compress the central piezoelectric patch. Therefore, the electro-
mechanical control loop is entirely feed-forward: bending induces
shear, while shear does not induce bending.

Odd micropolar elasticity. The feedback results in an elastic
response that cannot be realized without an internal source of
energy. This effect, apparent in the emergent continuum equa-
tions, may be deduced solely using symmetries and conservation
laws based on classical beam theory (1D micropolar elasticity).
Crucial to our design is the notion of a parity inversion P, defined
here to be a mirror reflection of the beam about the z-axis that
sends x to —x. Fig. le shows that under parity, the two inde-
pendent degrees of freedom, h(x) and ¢(x), transform as

h(x) ’Eh(—x) (1)

PP — ¢(=x) )

Since ¢(x) acquires a minus sign under parity, we say that ¢(x)
is a micropolar degree of freedom#7:48. The equations of motion
for a freestanding micropolar beam are then built out of
conservation laws. Linear momentum conservation implies that

ph = axazx (3)

where o, is the shear stress and p is the mass density. Moreover,

angular momentum conservation implies
I(P = axM + UZX (4)

where M is the bending moment and I is the cross-sectional
moment of inertia. The moment M and stress o,, are themselves
determined by the deformation of the beam via a set of
constitutive relations. To leading order in gradients of /& and ¢,
the internal geometry of the beam is approximated by two
independent types of deformation: bending b(x) (Fig. 1f) and
shearing s(x) (Fig. 1g), defined as

b(x) = 9,9 (5)
s(x) = 0h — ¢ (6)
Under parity inversions, Egs. (1, 2) imply that
b(x) P b(—x) (7)
)P — (=) ®)

Assuming a linear response, one may in general write the linear
constitutive relations as:

[azx(ﬂ]_ /w{cn(ﬂ) cu(t@Hs(t—t/)}dg ©)
M) | S Cu(t) Cu() ] bt~ 1)
or in terms of frequency:

azx(w) _ Cll(w) Clz(w) S(w)
{M(w)} B [cn(w) czz(w)] [b(w)}

We denote the matrix operator on the right-hand side of Eq.
(9) as C(t). Causality implies that C(f) = 0 for ¢ <0 and reality of
C(t) implies C(—w) = C*(w). Direct substitution of Eq. (10) into
Egs. (3, 4) reveals that the equations of motion are invariant
under parity if and only if C,; and C,, are zero. Hence, we say
that C,; and C;, are micropolar moduli.

It is useful to parameterize the C(w) as

[Cu(w) Clz(“’)] _ { p(w) a(w) + Bw)
Cu(w) Cp(w) w) — fw) B(w)
where p is the shear modulus and B is the bending modulus, and
a and f are the symmetric and antisymmetric components of the
micropolar moduli. If the beam lacks an internal source of energy,
then the total work done by the beam on any deformation process
that begins and ends in the same configuration must be less than
zero: AW<0. This energy condition places the following

constraints on the finite frequency linear response coefficients
(see “Methods”):

(10)

(1

0 2 Im [u(w) + B(w)] (12)

0 < Im[u(w)] Im[B(w)] — Im[a(w)]* — Re[f(w)]’ (13)

for all w. Notice that the reality condition C(—w)= C*(w)
implies Im[C] =0 at w=0. As a consequence, we must have
B(w — 0) =0 for any passive beams.

However, our active metamaterial has an internal source of
energy and thus need not obey this constraint. The feed-forward
coupling between bending and shearing suggests a linear response
matrix of the form:

[C“(w) Clz(w)} _ {‘u(w) P(a))]
Culw) Cy(w) 0  B(w)

The electronic control loop introduces the coefficient P =2a =
2f3, which we refer to as the odd micropolar modulus. This

modulus breaks two crucial symmetries. Since the electromecha-
nical coupling violates parity, the active modulus P must occur in

(14)
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the off-diagonal entries. Moreover, P occurs only in the upper-
right entry because the electro-mechanical coupling is feed-
forward: bend causes shear, but shear does not cause bend. As a
result, the matrix C is asymmetric, indicating that the beam
violates Maxwell-Betti reciprocity, even at zero frequency.

For our metabeam, we measure the moduli via COMSOL
simulations in which we apply controlled displacements at finite
frequency to the front and back faces of a single unit cell. By
measuring the reaction forces on these faces, we determine the
resulting stresses and, consequently, the moduli. We empirically
find that p=13x10kg/ms? and B=0.112x 10%kg/s> are
approximately independent of frequency, while P(w) = IIH(w),
where H(w) is the transfer function and IT = 4.7 x 10° kgm/s? is a
material constant. From the metabeam geometry and materials,
we compute the average volumetric density p = 5613 kg/m3and
the average cross-sectional moment of inertia 5.9 x 1073 kg/m.
See Supplementary Notes 1 and 2 for additional characterization
details.

Energy cycles. It is useful to consider the elastic limit of Eq. (11)
in which C(w) is real and approximately independent of fre-
quency. For a passive beam in this limit, the matrix C is obtained
by approximating the energetic cost of deformation by a quad-
ratic function:

(15)

The work (per unit volume) done in an infinitesimal
deformation of the beam is given by:

dW = 0,ds + Mdb

_ U, B,
W—zs +2b + asb

(16)

From Eq. (16), we conclude 0, = aa—‘;" and M = %—”X. Hence, we
obtain the linear constitutive relations:

=Ll

Since C in Eq. (17) is obtained via a second derivative of an
energy function, it is symmetric. This is a manifestation of the
Maxwell-Betti reciprocity theorem. In this case, the cumulative
work done over a sequence of deformations depends only on the
initial and final configurations: AW= [ dW = Wg,a — Winigiar- In
particular, if the procedure begins and ends at the same state, we
have AW =0.

Notice that the constitutive relation in Eq. (14) violates C = CT.
Hence, the Maxwell-Betti reciprocity theorem implies that the
form of C in Eq. (14) does not follow from a potential energy
function. To see this explicitly, consider the differential of energy
given by:

(17)

dW = o,,ds + Mdb (18)

—a(te B P P ibds —
—d(zs +2b +25b)+2(bds sdb)  (19)

Notice that the second term in Eq. (19) cannot be expressed as
the differential of a potential. By Green’s theorem, integrating the
work done ¢dW over a closed loop in strain space yields:

7{ dwW = % Pdsdb = Px Area
v v

where “Area” is the signed area of the region V enclosed by the
path in the space of strains. Notice that the work done per cycle
can be either positive or negative depending on the orientation of
the path, and is independent of the rate of the process (in the
quasistatic limit). Since the crucial ingredient for such cycles is an

(20)
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Fig. 2 Quasistatic deformation cycles with odd micropolar elasticity.

a The state of the unit cell is tracked in the space of shear and bend. When
a quasistatic closed path is traced out in this space, the unit cell performs
work per unit volume that is proportional to the area times the modulus P.
The z-displacement is provided in arbitrary units. b We numerically
compute the work done for a clockwise (top) and a counterclockwise
(bottom) path. The solid lines are predictions from the continuum theory,
and the black dots result from finite element simulations of the unit cell. In
the simulations, maximum amplitudes of bending and shearing are

bmax 107 M~ and Smax & 1072, respectively. See Supplementary Note 1
for further details on the simulation.

antisymmetry in C, we refer to this form of elasticity as “odd”
(i-e., antisymmetric) elasticity 7.

To verify that our design displays this property at low
frequencies, we perform COMSOL simulations of the beam with
full piezoelectric coupling. As illustrated in Fig. 2a, we subject a
single unit cell to a four-step protocol of shearing and bending by
enforcing displacement-controlled boundary conditions at the
two ends of the beam. We measure the reaction forces on the
control surfaces to compute the work done by the beam, plotted
in Fig. 2b. When the deformations are performed in a clockwise
direction in strain space, as shown in the top panel of Fig. 2b, the
cumulative work done is negative once the unit cell returns to its
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initial configuration. Hence, energy flows from the external agent
into the internal power reserves of the medium. When the cycle is
reversed, so is the flow of energy. The ability to inject or extract
mechanical energy through quasistatic cycles is synonymous with
odd elasticity, i.e. a quasistatic stress-strain relationship that does
not follow from a potential energy. In the quasistatic limit, the
total work done is given by P times the area enclosed in strain
space. In the Methods, we also derive energy relations for cycles at
finite frequency. For those cases, the total work done is related to
|P|, arg(P), and the area enclosed in strain space.

Odd micropolar elastodynamics and the non-Hermitian skin
effect. We now ask about the dynamic consequences of the active
feed-forward control with parity violation. We first consider the
elastic approximation in which C(w) is real and frequency inde-
pendent. The linearized continuum equations governing the
motion of the beam are given by:

ph = ud*h + Po*p — ud, ¢ 21

1§ = pd h+ B + P3¢ — ug (22)

Using Fourier transform, Egs. (21, 22) may be cast in the form:

Pn 0 0 —kI, —PLk [P,
0 ﬁj, — o 0 0 i iP—kl f’j’
5 —k, —i 0 0 5 (23)
b 0 —k, © 0 b
D(k)

where k and w are the wave number and frequency associated
with the Bloch wave e/k*—@%) We have introduced the notation:

s= \/p(axh - (P>, b = @ax¢ (24)

‘/—(Pv ph \/_h

Here, s represents the shear, b represents the bending, p is the
angular momentum, and p, is the z-component of the linear
momentum. This parameterization is natural since the standard
inner product

(25)

o L2 ~2
2e = [p,| +‘p¢’ +(§I2+‘b’ (26)
is equal to twice the mechanical energy density e. The dynamical
matrix D(k) depends on four parameters: [, = \/I/_p is roughly
the thickness of the metabeam; I, = \/B/y is the distance over
which shearing and bending of equal transverse deflection cost
equal amounts of energy; w; = \/u/I sets a frequency scale
separating transverse flexural modes and high frequency shearing
modes; finally, the parameter P = P/./By is the normalized odd
micropolar modulus. For our metabeam [; = 103 m, [, = 102 m
w, =10% Hz, and P 5 1.

Within the continuum theory, the vibrational dynamics can be

captured by solving the secular equation detD(k)[— w] = 0, which
takes the form
0=a"—[1—iPk,+ KL +5)]o" +K'EL (27

where w = w/w;. Notice that Egs. (21, 22) are two coupled second
order equations and hence permit a dispersion with four
branches. For small wavenumber, the dispersion for the low
frequency flexural bands is given by:

w, = tw, [LLK £iPLEKE + O(BEK")]

As can be seen from Eq. (28), when P is nonzero and real, the
periodic boundary spectrum acquires a nonzero imaginary

(28)

component. The nonzero imaginary contribution arises since
the active metabeam has the ability to physically introduce or
remove mechanical energy. Moreover, the modulus P violates
parity and hence breaks the symmetry between k — —k, in
contrast to the design in ref. 7 where the parity violation is
induced by a term in the dispersion that is linear in k.

The simultaneous breaking of parity and energy conservation
allows our active micropolar metamaterial to selectively amplify
and attenuate waves based on their direction of travel. In Fig. 3a,
we show the spectrum of the flexural mode in the right half of the
complex plane for P> 0. The solid line is the continuum theory,
valid at small k < 1/ \/E, and the discrete points are the results
of fully coupled COMSOL simulations. In the calculations,
P = +311, and there are no free fitting parameters. (The material
constants I1, p, B, and p in the continuum theory are determined
from independent simulations, see Odd micropolar elasticity.) As
illustrated in Fig. 3a, for P> 0, Im(w) > 0 whenever Re(dw/dk) >0
and Im(w) <0 whenever Re(dw/dk) <0. Physically, this means
that wave packets traveling to the right are amplified, while wave
packets traveling to the left are attenuated. As an illustration,
Fig. 3b shows the inverse penetration depth « for w taken to lie
along the positive real axis. From the continuum theory, we
compute the analytical formula for x (see “Methods”)

p P

29
B4yw (29)

In Fig. 3b, we compare Eq. (29) to the COMSOL simulations
(see “Methods”) and a semi-analytical technique known as the
transfer matrix method (see Supplementary Note 3).

This unidirectional amplification can be understood from the
point of view of the non-Hermitian skin effect>!-%2. Given a
complex frequency w, we can define the following topological
index:

(w) = oy a]{ » dklog w, (k) — ] (30)
where L is the length of a single unit cell and w,(k) is the
frequency of the a band. Here, we take o to run over the flexural
bands. The topological index v(w) indicates whether a system
with semi-infinite boundary conditions will host a localized mode
at the frequency w. When v(w) >0, a semi-infinite system with
domain x € [0,e0) will host a mode localized to its left boundary at
frequency w. Likewise, when v(w) <0, a semi-infinite system with
domain x € (—e0,0], will host a mode localized to its right
boundary.

As shown in Fig. 3¢, d, the sign of « can be rationalized by
examining v(w) for an example frequency w (denoted by the
star) along the real axis. For P>0, the periodic boundary
spectrum (red) winds once counter-clockwise around the star,
and hence v(w) < —1. However, for P<0, the localization is
reversed since the direction of the contour is reversed. In the
Methods, we show how to compute v(w) directly from the
continuum equations using a generalization of Eq. (30).
Furthermore, in Supplementary Note 1 we discuss how the
presence of additional vibrational bands affect the calculation
and physical interpretation of v(w).

Pseudo-Hermitian dynamics and direction-dependent bending
modulus. In the preceding section, we took P(w) to be real and
constant. However, by introducing a phase delay into the transfer
function H(w) we can control the complex argument of P. When
arg(P) = £m/2, the secular Eq. (27) has entirely real coefficients.
Hence, the periodic boundary spectrum will consist of frequencies
that come in real values or complex conjugate pairs. This
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Fig. 3 Non-Hermitian skin effect via the odd micropolar elasticity. a The vibrational spectrum for the flexural mode of a metabeam with periodic
boundary conditions and odd micropolar modulus P = 311. The black line results from the continuum theory given by Eq. (28). The data points are obtained
via fully piezoelectrically coupled simulations in COMSOL with the hue indicating the wavenumber kL, where L is the unit cell length. For the full spectrum
plotted as a function of k in the continuum theory and in the numerics, see Fig. 7 and S2, respectively. The inset compares the continuum theory and
simulations for small wavenumbers « 1/\/E. b The inverse penetration depth « for real @ in a medium with open boundary conditions. The points are the
results of COMSOL simulations, the black lines are Eq. (29), and the dark lines are the result of the transfer matrix method, see Supplementary Note 3.
¢ The localized states are connected to a topological index v(w). The periodic boundary spectrum for P> 0, P=0, and P < O are represented schematically
by the solid lines. The arrows indicate the direction of increasing k. For a given frequency , the winding number v(w) of the periodic boundary spectrum
indicates the presence of a localized mode. d The localization of eigenmode at the value of @ denoted by the star in (¢) is schematically illustrated.

additional symmetry is sometimes referred to as a generalized PT
symmetry30:0364 which arises if and only if there exists an
antiunitary operator that commutes with D(k). We say that the
PT symmetry is unbroken when the eigenvalues of D(k) are
entirely real, and that it is broken otherwise. In the unbroken
phase, D(k) is said to be pseudo-Hermitian. Pseudo-Hermiticity
implies that each eigenvector of D(k) will individually conserve
the mechanical energy density e in Eq. (26). However, when two
or more eigenvectors are superimposed, e can oscillate in time,
though remaining centered around a constant time-
averaged value.

Since pseudo-Hermiticity constrains the periodic boundary
spectrum of D(k) to lie along the real line, the unidirectional
amplification vanishes when P is imaginary. Nonetheless, the
effects of parity violation are still present. We note that Eq. (28)
may be written in the form:

22
SO . Y iy
P U pu

When arg(P) = £7/2, we can interpret the form of Eq. (28) as
having a rescaled bending modulus:

B =B[1 IPlk ’
eff — :FZ/J

Notice that the value of B¢ depends on the sign of k, and hence
the effective bending modulus is direction dependent. Fig. 4a
shows the tilting of the dispersion for arg(P)=+mn/2. The tilt

€29

(32)

implies that the phase and group velocities for right and left
traveling waves are unequal. Numerically solved modes are
shown in Fig. 4b. We note that the pseudo-Hermiticity endowed
by P(w) x i must exist exclusively at finite frequency because
P(w) cannot be nonzero and imaginary at w =0 due to the
requirement that P(—w) = P*(w).

A discrete model of the odd micropolar metabeam. To gain
intuition into the mechanics of the metabeam, it is useful to
consider a discrete model. As shown in Fig. 5a, b, the ith unit cell
of the discrete model consists of a rod (gray) with moment of
inertia J and total mass m, whose position and orientation are
captured by a height /; and an angle ¢, ;. The rods are connected
via mass-less, rigid frames and two springs. The top spring is a
Hookean spring with tension

T;=k,(hi_y —h;+Lo;_;) (33)

and a bottom spring is a torsional spring that exerts an angular
tension

7, = Kkp(@;, — @) (34)

In Fig. 5¢, d, we show the addition of an active element that
senses the stretching of the bottom spring and actuates an
additional tension in the top spring

T = p(o;-y — ¢) (35)
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Fig. 4 Pseudo-Hermitian dynamics. a The spectrum is shown for the metamaterial with arg(P) =n/2. We note that the reality of the frequencies is
maintained, while the modulus P breaks the k — —k symmetry. L is the unit cell length. b Transverse displacement wave fields for the waves traveling in
different directions. The left and right traveling modes are excited at equal frequencies, but have differing wavenumbers due to the odd micropolarity. The
red arrows indicate the direction of travel of the wave, and H is the transfer function such that P = I1H.

e 1§

Fig. 5 Discrete model for odd micropolar beam. a A discrete model of a
Timeoshenko beam consists of a central mass m with moment of inertial J,
a Hookean spring of spring constant k, and a torsional spring of spring
constant k, Band lattice spacing L. b The unit cell is described by the height
of the mass h; and the angle ¢, of the black connecting rod. ¢, d The odd
micropolar beam has an internal feedback P that senses the angle change of
the torsional spring and actuates additional tension in the Hookean spring.
The control loop is unidirectional: stretching or compressing the Hookean
spring does not affect the torsional spring.

Summing the forces in the vertical direction yields a dynamical
equation for h;

mhy =T, — Ty, + Tf — T, (36)
=k, (hipy +hisy = 2h) + Lk, (9,1 — 9)) (37)
+2(Pigy + 9y — 29)
Furthermore, summing the torques yields
Jp;=1,—71i11 — L(Ti+1 + T?+1) (38)
= kp(@ir1 + @11 — 205) +PL(910 — ;) (39)

+ Lk, (hiyy — h; — Lo,)

Upon inspection, Eqgs. (37) and (39) are precise discretizations
of Egs. (21) and (22) with p =m/L, I=]/L, uy = k,L, B = «gL, and
P=1Lp. See Fig. S4 for a comparison of the dispersion for the
discrete model and continuum theory. Notice that the discrete
model manifestly conserves linear and angular momentum since
the linear and torsional springs exert equal and opposite forces
and torques, respectively, on the units they connect. Even without
externally applied torques, nontrivial internal angular momentum
transfer occurs between the translation of its center of mass ijhj

and the rotation of the axis J¢;, akin to a “spin-orbit” coupling.

Nonetheless, Maxwell-Betti reciprocity is violated by the
asymmetry in the relationship between the linear and torsional
springs: bending of the torsional spring induces a tension T% =
p(¢i_1—¢;) in the linear spring, while the deformation of the
linear spring h; ;—h;+Lg; ; has no response in the angular
spring. This asymmetry implies that a cycle of alternating
actuation and release of the linear and torsional spring is
associated with a nonzero amount of work done. For additional
discrete models illustrating the independence of Maxwell-Betti
reciprocity and momentum conservation, see Supplementary
Note 1.

Experimental demonstration. To probe the dynamic wave
phenomena originating from the odd micropolar modulus P, we
perform experiments in which we excite flexural waves in the
metabeam using piezoelectric actuators, see Fig. 6a and “Meth-
ods”. In experiments, we implement the following electronic
transfer function (cf. Fig. 1c):

Hy
(icu/wo)2 +2iw/wy + 1

H(w) = (40)

Here, { = 0.48 and H, = 3 are constants and w, = 3 kHz is the
cutoff frequency at which arg(P) = —mn/2. Other electrical circuit
and geometric parameters of the metabeam can be found in
Supplementary Note 2. We probe the vibrational dynamics of the
beam by initiating waves from either the right or left side of the
metamaterial via external piezoelectric elements. Fig. 6b, ¢ shows
the experiment at 2kHz in which waves from the right are
suppressed while waves from the left are amplified (see also
Supplementary Movies 1 and 2).

To construct the full spectrum of the metamaterial, we perform
the experiment with tone burst signals centered between 1.5 and
4 kHz. The transverse velocity wave fields are measured along the
medium using a laser Doppler vibrometer. We apply fast-Fourier
transforms in time and in space to extract the real k(w) and
imaginary part x(w) of the wavenumber as a function of
frequency for right-going (red) and left-going (blue) waves
(Fig. 6d, e). As described in Supplementary Note 3, the solid
theoretical curves are produced using a semi-analytical technique
known as the transfer-matrix method. The transfer-matrix
method utilizes the beam geometry, known material parameters,
and electronic feedback measured in simulations. No fitting
parameters are used in the comparison between experiment and
the transfer-matrix method curve.

As illustrated in Fig. 6f, the transfer function H(w) is chosen
such that —mn/2 <arg(P) <0 when w < wp. In this case, we find
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Fig. 6 Experimental demonstration of skin modes and odd micropolar moduli. a Experimental schematic. Flexural waves are generated in the active
metabeam from either the right or left side using piezoelectric actuators (yellow), see “Methods". A scanning laser Doppler vibrometer (SLDV) measures
the transverse velocity of the surface of the active metabeam. b, ¢ Unidirectional amplification of waves. A metamaterial consisting of 9 unit cells is
actuated from either the right (blue) or left (red) with a 2 kHz tone burst signal (gray). The output velocity is normalized by the maximum velocity
observed when the experiment is performed with no active feedback. d Observation of the non-Hermitian skin effect. Experiments are performed between
1.5kHz and 4 kHz for right to left (blue) and left to right (red) traveling waves. A 2D FFT shows the intensity of the observed spectrum. The intensity is
normalized by its maximum value. e The inverse decay length. In d, e the solid theoretical curves are based on the transfer matrix method. In d the gray
dashed curves are theoretical predictions with no activity. f A plot of arg(P) as a function of frequency. At w = wo (= 3 kHz), arg(P) = —x/2, indicating that
the system is pseudo-Hermitian and accordingly we observe k=0 at w = wg.

x < 0 for both left- and right-propagating waves (panel e). A value
of k <0 implies that waves propagating to the left are attenuated
whereas waves propagating to the right are amplified, which is
confirmed by the FFT intensity in panel d. Likewise —m<
arg(P) < —mn/2 for w > wy. In this case, we find x>0, indicating
that waves propagating to the right are attenuated whereas waves
propagating to the left are amplified. In addition, when w = w,
arg(P) = —m/2, and the waves propagating to the left and right
display no attenuation or amplification. At this frequency, the
effective dynamical matrix is pseudo-Hermitian, and the
differences between left- and right-propagating waves reside only
in the wavelengths and phase velocities. We note that, in
experiments, the unidirectional amplification is limited by the
maximum output voltage (+45 V) of our electric control system.
In practice, to maximize the amplification ratio, one strategy is to

use a modest value of the transfer function, say |Hy| =3, and
increase the number of unit cells over which the wave is
amplified.

Discussion

The metabeam presented here demonstrates active odd micro-
polar moduli and non-reciprocal responses absent in energy
conserving media that are enabled by sensing, actuating and local
computation. The minimal on-board electronics that power the
active metabeam enable its multiple functions as an elastic engine,
selective mode amplifier, and mechanical diode. We uncover an
intrinsic relation between an odd micropolar modulus, the non-
Hermitian skin effect, and a corresponding topological index.
Numerical and experimental results show unidirectional
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amplification and attenuation of waves propagating through the
metamaterial. Odd micropolarity extends the range of possible
couplings between conventional strains/stresses and higher-order
curvatures/moments by including antisymmetry in their rela-
tionship. The electronically assisted mechanical feedback provides
an appealing solution to precisely modulate odd micropolar
moduli without requiring changes to the metabeam’s structure,
geometry, or passive moduli. Our design can be flexibly tuned
through computer coding and scaled via microelectromechancial
systems (MEMS)®>60, Our mechanical approach relies on a feed-
forward control loop, a generic concept that can exist in both
metamaterial and biological contexts. The continuum theory also
makes our approach especially generalizable to the mechanics in
other systems. Combining the principles illustrated here with
disorder, nonlinearities, and strong dissipation suggests new
approaches for the control of filaments and membranes arising in
biological media®1819,

Methods

Sample fabrication. The metabeam is composed of three piezoelectric patches
(STEMINC PZT 5J: 6 mm x 4 mm X 0.55 mm) mounted via conductive epoxy onto
a laser-cut stainless steel host beam. We achieve antisymmetric actuation without
the use of an inverting voltage amplifier by mounting the two piezoelectric
actuators such that their piezoelectric polarization directions are oppositely
oriented.

Experimental procedures. In experiments, nine metamaterial unit cells are con-
nected with control circuits, see Fig. 6a. Two piezoelectric transducers are attached
on the left and right sides of the metamaterial to generate incident flexural waves.
We employ ten-peak tone-burst signals with central frequencies ranging from 1.5
to 4.0 kHz in step sizes of 0.1 kHz. We generate and amplify incident wave signals
via an arbitrary waveform generator (Tektronix AFG3022C) and a high voltage
amplifier (Krohn-Hite), respectively. Transverse velocity wavefields are measured
on the surface of the metamaterial by a scanning laser Doppler vibrometer (Polytec
PSV-400). We note that the transfer-matrix method used to derive the theoretical
curves in Fig. 6d, e rigorously assumes an infinite system. To experimentally
approximate these conditions, we embed the active metamaterial within a larger
host steel beam denoted by the gray region of Fig. 6a. When waves cross the
boundaries from host beam to the metamaterial, the reflection at boundaries
between the host beam and the metamaterial is be negligible, as evidenced by our
numerical and experimental results. To suppress reflected waves at the free
boundaries of the host beam, we bonded two layers of clay on the host beam with
sufficient lengths. This way, waves can propagate through the metamaterial with
approximated infinite boundary conditions. The decay length is then obtained by
calculating the wave amplitudes at different points in the metamaterial.

Finite element simulations. We calibrate the transfer matrix method and con-
tinuum equations by conducting fully three-dimensional numerical simulations of
the unit cell using the commercial finite element software COMSOL Multiphysics.
In all the simulations, we model the piezoelectric patches via a three-dimensional
linear piezoelectric constitutive law. The central piezoelectric patch acts as a sensor
whose signal is obtained by integrating the free charge over the top surface of the
piezoelectric sensor. The top and bottom surfaces of the piezoelectric sensor have
zero electric potential. The bottom surfaces on the piezoelectric actuators are
ground, and we apply electrical potentials on the top surfaces to act as actuating
voltages. The actuating voltages are related to the sensing voltages via the electronic
transfer function. For the wave dispersion computations in Fig. 3a, Floquet periodic
boundary conditions are applied on the left and right boundaries of a metamaterial
unit cell. We calculate eigenfrequencies of the unit cell with different real wave-
numbers. To simulate the wave propagation with open boundaries (Fig. 3b), a
metabeam composed of 15 unit cells is placed between two external beams. Two
perfectly matched layers (PMLs) are attached to both ends of the external beams in
order to suppress reflected waves from the boundaries. The incident flexural wave
is generated by applying a harmonic force on the boundary of the host beam. The
out-of-plane displacement is measured at the left- and right-hand sides of the
metabeam. The penetration depth is calculated by comparing the amplitudes of the
two extracted displacements.

Energy bounds on dynamic moduli. Here we discuss Eqgs. (12, 13) in the main
text. For simplicity, let us collect the stresses into a vector t = (0., M)T and the
deformations into a vector u= (s, b)T. Suppose the beam is subject to a defor-
mation procedure such that its initial and final configurations at times t = —co and
t = oo are identical. Then the total work per unit volume done by the beam is given

by
" du
AW:/_wE.tdt (41)
=i /m wu'(0) - C(w) - u(w)dw (42)
= /oe wu'(w) - M(w) - u(w)dw (43)

In the final step, we have introduced the matrix M(w) = i[CT(w) — C(w)] and
used the fact that u(—w) = u*(w) and C(—w) = C*(w). If the medium is passive,
then we require that AW must be negative for all choices of u(w). Therefore, we
require that the matrix M(w) be negative semidefinite. Using the parameterization
in Eq. (11), this requirement implies Eqs. (12, 13). See refs. ©7-%9 for related
discussions in two- and three-dimensional media.

Cycles at finite frequency. To gain intuition on the elastodynamics of the odd
micropolar metabeam, it is useful to consider the notion of a cycle at finite fre-
quency. At a finite frequency w, the modulus P need not be real and we may write P
= |P| €!p. In this case, both the real and imaginary parts of P will contribute to the
energy extracted. For example, consider a cyclic protocol that involves bending of
amplitude |b| and shearing of amplitude |s| and relative phase delay ¢p. Applying
Eq. (43), the total energy extracted per cycle is

Work = —7|P||s||blsin (¢ + ¢p) (44)

Notice that Eq. (44) gives mechanistic insight into the amplification of the
waves observed in the experiment. When P is nonzero, the eigenmodes of D(k)
comprising a given plane wave will generically have a phase delay between bending
and shearing. Hence, after one cycle, the nonconservative stresses will have
converted stored electrical energy into mechanical energy. This conversion will
cause the amplitude of the eigenvector to grow in proportion to its current
amplitude, for which |s| |b] is a proxy. Hence, the mode will be exponentially
amplified, as reflected by the imaginary component of the eigenfrequencies.

Topological index in the continuum. In this section, we discuss the index v(w)
from the point of view of the continuum theory>%. The spectrum as a function of k
is plotted in Fig. 7a for P = 0. The spectrum is given by the roots of the secular
Eq. (27) and contains four roots since the equations of motion are second order in
time and involve two coupled fields. We explicitly compute the eigenvectors and
eigenvalues for small k and P =0 in Supplementary Note 1. The spectrum consists
of a pair of Goldstone modes, which for small k and P = 0 represents a flexural
motion of the beam. Additionally, the continuum equations imply two modes
separated by a band gap w; = 105 Hz. As shown in Supplementary Note 1, for small
k and P =0, these modes are dominated by a shearing motion. For the Goldstone
mode, we expect a range of validity of the continuum theory at small k, since
w(k — 0) = 0. However, for the shear dominated mode, the continuum theory is
not expected to self-consistently apply due to the finite gap. In Supplementary
Note 1, we numerically compute the spectrum and eigenmodes for frequencies
above the experimentally relevant range using COMSOL. There we also discuss
why the winding number v(w) computed in the continuum is still physically
relevant despite the presence of additional high frequency modes not captured by
the continuum.

For a translationally invariant system, the difference between periodic and open
boundary conditions is whether the differential operator that defines the equations of
motion allows formal eigenvectors with complex wavenumber k. For a system with
periodic boundary conditions, the spectrum consists of values of w that solve
det[D(k) — w] = 0 for real k. However, for a system on a semi-infinite domain
x € [0,00), we allow Im(k) > 0. These modes decay to the right as exp[(—Imk-+iRek)x]
and therefore maintain a finite L2 norm, which represents the mechanical energy
density. To determine whether a given frequency w is in the semi-infinite boundary
spectrum, we first must count the number of solutions to det[D(k) — w] =0 with
Imk > 0. We do so by applying Cauchy’s argument principle from complex analysis:

w) = li ! ilog det[D(k) — w]dk

im —; 4
R—o00 271 [ gy dk #5)

where I'(R) is a counter clockwise curve in the complex plane given by [—R, R]
together with Re® for ¢ € [0, nt]. The winding number 7(w) itself does not directly
determine the number of localized modes, since we must also consider the boundary
conditions placed at x = 0. Suppose that y independent homogeneous boundary
conditions are placed at x = 0. Then the number of left localized modes will
generically be given by:

(46)

Likewise, for a system with boundary (0, ], the number of right localized modes
is given by

leftlocalized modes at w = ¥(w) — y

(47)
where d is the degree of det[D(k) — w] as a polynomial in k. Whenever the right-hand

right localized modesat w = d — ¥(w) — y
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Fig. 7 Non-Hermitian band topology via odd micropolar elasticity. a The
spectrum for P = O features a pair of bending dominated bands (black) and
shear dominated bands (gray) separated by a band gap w,. (b-d) The
spectrum is shown in the complex w plane for P=0, P>0, and P<0. The
thick black lines represent the bending dominated band, while the thick gray
lines represent the shear dominated bands, both with k € [—R, R] for a finite
R. The thin black lines represent the analytical continuation of the spectrum
for k= Rei# for ¢ € [0, n]. The arrows indicate the direction of increasing k.
The numbers indicate the value of v(w) for @ in the corresponding colored
regions of the complex plane. This number corresponds to the number of
times that the spectrum winds around a given region. e For a semi-infinite
system with a free boundary, the winding number of =1 (z = 3) for our
continuum theory indicates a mode localized to the right (left) boundary.
The wave forms schematically depict the localization with A(x)
representing amplitude. For a calculation of the precise eigenvectors, see
Supplementary Note 1.

side of Eqs. (46) or (47) is negative, the mode count is taken to be zero. In
Supplementary Note 1, we provide a derivation of Egs. (46) and (47) and explicitly
define independent, homogeneous boundary conditions. Such boundary conditions
include, for example, stress-free (M = o0, = 0) or motion-free (h = ¢ = 0) boundaries.
Fig. 7b-d illustrates the computation of the winding number. The thick black and
gray lines are the periodic boundary spectrum for k € [-R, R], and the thin black
lines are the analytical continuation for k = Re¢ for ¢ € [, n]. Colored regions are
labeled by the value of (w). Suppose for example that the beam is given stress and
moment free boundary conditions 0,, =0 and M = 0 at x = 0. In this case y =2, and
therefore 7(w) = 1 indicates the presence of a right localized mode, 7(w) = 3 indicates
the presence of a left localized modes, as shown in Fig. 7e. In the Supplementary
Note 1, we explicitly compute examples of the eigenmodes in Fig. 7c.

Topological index from discrete models. We now discuss the topological index
in Eq. (30), which is appropriate for discrete settings such as the discrete model and
finite element simulations. Suppose the system is composed out of a unit cell of
finite length L whose internal state is represented by a vector ¥(x). The compo-
nents of ¥ can represent, for example, the displacement and velocities of points in
a finite element mesh. Here, x is a discrete label that takes values in integer
multiples of L. The Fourier transform of the equations of motion now read:

wP(k) = Z(k) - ¥(k) (48)

where D(k) is the dynamical matrix for the discrete system, and k is the wave
number assuming values in [—7/L, n/L]. For a system with periodic boundaries, the
spectrum is given by solutions to det[D(k) — w] = 0 for k € [-m/L, m/L]. For a
system with semi-infinite boundaries (e.g., x € {0, L, 2 L,...}), we allow Imk > 0. As
detailed in the Supplementary Note 1, we can invoke a similar application of the
Cauchy argument principle to determine the number of eigenmodes at a given
frequency w. To do so, we write k = —ilog), where A assumes values on the unit
circle S in the complex plane. We can then apply Cauchy’s argument principle
using S as a counterclockwise contour for A. We have:

1 [ d .
v(w) = ﬁ/s alog det[Z7(—ilogh) —w]dA (49)
- / P de 20— aldk (50
" 2mi |y dk BT )
! " 4 gl (B) — wldk
_1 <4 _ 1
i /,H/L a 08Lak) — @] ey

where w,(k) is the value of the periodic spectrum of the band «, in agreement with
Eq. (30) from the main text. Notice that for the frequency denoted by the red star
in Fig. 3¢, we have v(w) = —1. However, for the same point in Fig. 7c (which lies in
the red region to the right of the origin), we have 7(w) = 1. To see the relationship
between these quantities, notice that 7(w) in Eq. (45) counts the number of zeros of
flk) = det[D(k) — w] in the upper half plane. However, in computing v from Eq.
(49), the interior of S contains not only the zeros of F(A) = det[D(—ilogl) — w] but
also a set of poles. Each of these poles physically represents a boundary condition
that arises when transitioning between a Laurent operator to a Toeplitz operator
(see Supplementary Note 1 for details). The number of poles depends on the
precise discretization of the continuum equations. Hence the winding number v(w)
as given by Eq. (30) represents the difference between the number of zeros (can-
didate modes) and the number of poles (boundary conditions). Therefore, one
should compare v(w) to 7(w) — y for an appropriate choice of y. In practice, y is
determined by physically interpreting the boundary conditions implied by the
discretization. In Supplementary Note 1, we show that the discretization used in
the discrete model and the COMSOL simulations enforce displacement-free
boundary conditions and hence corresponds to y = 2. Hence m(w) - y = v(w) = —1
as required for physical consistency.

Calculation of penetration depth. In Fig. 3b, we show the penetration depth for
modes associated with positive real w. We can compute this expression by solving
w, (k) = w in Eq. (28) for complex k. In particular, substituting k = g + ix into
Eq. (28) yields:

P
0 = 2k + — (k* — 3ki?
K+2H( %) (52)

0= EKl _&) K =) = Ljey
p u u

Solving Egs. (52, 53) to leading order in k, we obtain Eq. (29).

(53)
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