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a b s t r a c t

With the growing interest in the field of artificial materials, more advanced and sophisticated wave
functionalities are required from phononic crystals and acoustic metamaterials. Due to expensive
iterative fitness evaluations, inverse designing acoustic metamaterials with desired physical responses
using conventional optimization approaches remains challenging especially in high-dimensional design
space. To address this issue, we suggest a physics-guided machine-learning-based inverse design
approach for realizing multifunctional wave control in active metabeams connecting with negative
capacitances (NCs). The transfer matrix method which relates the wave field and its derivative to carry
the fundamental wave propagation information will be embedded in the ML network to construct the
complex mapping between the input and output responses of the unit cell. After this network is well
trained, global wave propagation behavior in the active metabeam can be accurately described by the
concatenation of networks of each unit cells into a global stiffness matrix. After the performance of
the network is validated by conducting numerical simulation, we further apply the proposed network
as a surrogate model for genetic algorithm on the inverse design of the metabeam for quick realization
multifunctional wave control abilities without changing microstructures. Our proposed approach can
not only be easily extended to design other types of active/passive metamaterials, but also provides
some insights into optimization aided engineering in high-dimensional (2D and 3D) design space of
active metamaterials.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical metamaterials, which are artificially engineered
aterials, have shown promising potential for manipulating elas-

ic waves at the subwavelength scale. Innovative methods for
lastic wave focusing [1], cloaking [2], super-resolution imag-
ng [3], negative refraction [4] and wave steering [5] have been
xplored. Nonetheless, there exist challenges that the capabilities
f the passive metamaterials are not sufficient or extremely dif-
icult to achieve various wave and vibration control applications
ecause most engineering problems are broadband and very dy-
amic in nature. Moreover, actively controlling the position and
idth of the band-gap frequency region in real-time is very diffi-
ult in practice, if not impossible, for passive metamaterials. One
f the most pronounced challenges in mechanical metamaterial
evelopment is the ability to tune their performance in an adap-
ive manner without requiring physical microstructural modifi-
ations. To tackle this challenge, the active metamaterials were
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developed by integrating smart materials into the microstruc-
tures of the passive metamaterials [6–8]. Among those works,
piezoelectric patching techniques have demonstrated their out-
standing potentials for achieving tunable properties and wave
functionalities [9,10]. Due to their quick response, shunted or pro-
grammable electric circuits can tune the mechanical deformation
of the metamaterial in real time. Many active metamaterials with
piezoelectric patches have been proposed for broadband wave
control, vibration mitigation, topological insulators and even odd
elasticity by electrically tuning the dynamic stiffness, mass den-
sity, impedance and stiffness tensor [11–14]. For example, the
active metabeams with semi-active negative capacitances (NCs)
possess tunable band gaps or wave-guiding over desired broad-
band frequency ranges [15,16]. However, as an inverse design
problem, there is still a lack of efficient approach to find a fea-
sible active metabeam with non-periodic NCs for fulfilling mul-
tifunctional and multifrequency wave control capabilities. These
abilities are crucial in many engineering scenarios ranging from
wave steering to frequency selection in elastic wave detection
and imaging.

The inverse designs of the mechanical metamaterials are
mainly based on the optimization methods. For an example, to

https://doi.org/10.1016/j.eml.2022.101827
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ind the band gap in a certain frequency range or the phase shift
t a specific frequency, an optimization method (such as the ge-
etic algorithm) can automatically search for an optimal solution
n the design space [17–21]. Solving an optimization problem
s convenient and straight forward. However, optimization algo-
ithms are generally computationally intensive due to iterative
itness evaluations. Inverse design problems for multifunctional
ealization of the active metamaterial are extremely difficult or
ime-consuming if not impossible. In light of the aforementioned
hallenges, and driven by the progress in data science, promising
lternatives have been surfaced in the form of machine learning
ML) techniques. The incorporation of ML into the inverse meta-
aterial design could significantly reduce computation efforts
ue to the training and reward mechanism. Recently, ML tech-
iques have demonstrated their remarkable ability in unveiling
he implicit relationship between the microstructures and the
argeted wave responses of metamaterials [22–26]. Multilayer
erceptron (MLP), also known as artificial neural network (ANN),
ave been widely used in ML techniques for inverse designs of the
etamaterial for specific wave mitigation application [27–29].
he MLP network is powerful in building the nonlinear map-
ing relation from a complex input dataset to a complex output
ataset [30]. Despite their towering empirical promise and some
reliminary success, most ML approaches currently are unable to
xtract interpretable physical information and knowledge from
his data deluge. Moreover, purely data-driven models may fit
bservations very well, but predictions may be physically incon-
istent or implausible, owing to extrapolation or observational
iases that may lead to poor generalization performance. There-
ore, there is a strong need for integrating fundamental physical
aws and domain knowledge by ‘teaching’ ML models about gov-
rning or underlying physical rules, which can, in turn, provide
physics information’ — that is, strong theoretical constraints and
nductive biases on top of the observational ones. To this end,
hysics-guided learning as the process by which prior knowl-
dge stemming from the physical modeling can be leveraged to
mprove the performance of a ML algorithm. Currently, there
s only limited work on physics based ML model. For instance,
amaniego et al. [31] and Anitescu et al. [32] proposed to use ANN
o solve classical partial differential equations that govern certain
hysical mechanisms. However, these works primarily target on
olving physics field distribution, rather than the inverse design
f materials.
In this study, a physics-guided ML technique is proposed to

eek an inverse solution of the active metabeam for various wave
ontrol abilities by integrating non-periodic piezoelectric patches
ith different NCs. We aim at designing an inhomogeneous 1D
ctive metabeam consisting of dissimilar unit cells capable of
chieving user-defined dynamic performance. The transfer ma-
rix method which relates the wave field and its derivative to
arry the fundamental wave propagation information will be
mbedded in the ML network to construct the complex mapping
etween the input and output responses of the unit cell. After
his network is well trained based on a small dataset, global wave
ropagation behavior in the active metabeam can be accurately
escribed by the concatenation of networks of each unit cells
nto a global stiffness matrix of the entire beam. Therefore, the
etwork in our approach can completely replace the original
hysical model, where its input and output are left-end and right-
nd responses of the metabeam. The performance of the network
s validated by conducting numerical simulation on predicting
he global wave field of the active metabeam. We further apply
he proposed network as a surrogate model for genetic algorithm
GA) on the inverse design of the metabeam for quick realization
f multifunctional wave control abilities, which is difficult and

ime consuming for standard optimization method. It is worth

2

mentioning that the proposed ML-based approach requires only
a one-time network training on unitcell to model the entire
metabeam structure. The design parameters of each individual
element are then determined through the GA-based inverse de-
sign. Such design method of the active metamaterial based on
the machine learning techniques can easily extend to the high
dimension problem, which will find potential applications in fast
design of active acoustic devices and complex multiple-functional
metamaterial systems.

2. Construction of physics-guided ML model of a 1D active
metabeam

2.1. Physics modeling of active metabeam

As illustrated in Fig. 1(a), the active metabeam is constructed
by bonding an array of piezoelectric (PZT-5A) patches to a host
beam. The patches are individually shunted with an array of
different NC circuits to ensure a variation in the refractive index,
whose impedance is Z = 1/(iCNω) with i =

√
−1. Fig. 1(b,c)

how the nth unit cell of the active metamaterial beam and the
chematic of its shunted NC circuit, respectively. The value CN
f each NC can be expressed as CN = −

R1
R2
C0, with C0 being a

eferential capacity. Thus, by changing the variational resistance
1, the negative capacitance CN , or equivalently, the negative
apacitance ratio (NCR) λ = CN/CT

P , can be continuously tuned,
llowing ones to continuously modify the effective material prop-
rties of the metamaterial over a broad frequency range. Here,
T
P is the capacitance of the piezoelectric plate under constant
tresses.
For the direct problem, the multiphysics model is formulated

o calculate the effective bending properties of the piezoelectric
late by considering electro-mechanical coupling and the transfer
atrix method is employed to study wave propagation of the sys-

em. We start with a brief review of a linear metabeam governed
y an equation of motion [33]. For a homogeneous thin beam, the
otion equation governing the flexural wave propagation can be
ritten by the Euler–Bernoulli beam theory as:

I
∂4

∂x4
w − ρSω2w = 0 (1)

where EI is the flexural stiffness, ρ is the mass density, S is the
ross-section area, and w is the deflection of the beam. By using
he transfer matrix method, we can obtain the transfer relation
s:

R = QξL (2)

where ξ is the state vector defined as ξ = (w θ M F )T , θ is the
rotation angle, M is the bending momentum, F is the shearing
force, the subscript L and R denote the parameters at left and
ight end, respectively, and Q is the transfer matrix that builds the
elation between the left state vector and the right state vector.
he transfer matrix Q contains all the key mechanical character-
stics that determine the wave transmission and reflection at the
eam unit. For a homogeneous thin beam considered above, the
ransfer matrix can be explicitly obtained. However, it is difficult
o obtain its explicit expression for the active metabeam with
omplex microstructures and multiphysics coupling.
The transfer matrix Q of the active metabeam can be numeri-

ally obtained from effective homogenization approach which is
nly suitable for low-frequency wave propagation [33]. To over-
ome the limitation, we numerically calculate 16 components Qij
of the transfer matrix from the commercial software COMSOL
Multiphysics. The FEM model consider both the piezoelectric de-
vice module and the electric circuit module in frequency domain.
To numerically obtain the values of 16 components Q for a given
ij
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Fig. 1. Schematic of the active metabeam. (a) A host beam is bonded with an array of piezoelectric (PZT-5A) patches, which are shunted by NC circuits to realize
an adaptive wave control. (b) Schematic of the NC shunting circuit, which consists of an operational amplifier, two resistors, a capacitor, and a potentiometer. By
adjusting the resistance of the potentiometer, the equivalent NC of the circuit can be altered. (c) Schematic of the unit cell of the active metabeam. For simplicity,
the propagation of flexural waves is assumed to be confined along the x direction.
working frequency ω and a negative capacitance CN , we need 16
equations. The FEM simulations with 4 groups of independent
boundary state vectors are then conducted as (1) wL = 1, θL = 0,
wR = 0 and θR = 0; (2) wL = 0, θL = 1, wR = 0 and θR = 0;
(3) wL = 0, θL = 0, wR = 1 and θR = 0; and (4) wL = 0,
θL = 0, wR = 0 and θR = 1. Based on the calculated components
ML, FL,MR and FR, the transfer matrix in the metabeam unit can
be numerically determined. As a result, the global transfer matrix
for the metabeam with n unit cells can be then expressed as:

QG = Q(n)Q(n − 1) · · ·Q(2)Q(1) (3)

The global transfer matrix relates the state vector ξGR at the right
end of the metabeam with the state vector ξGL at the left end
of the metabeam via ξGR = QGξGL, from which we can calculate
the transmission of the flexural wave propagating through this
system. (See details in Appendix)

2.2. Physics-guided ML network

In this section, we construct a group of ML networks to learn
and predict the transfer matrices of these active metabeam unit
cells. In the study, the host beam is made with aluminum (mass
density ρ = 2700.0 kgm−3, Young’s modulus E = 69.0 Gpa, Pois-
son’s ratio ν = 0.33). The piezoelectric material is PZE-5A (mass
density ρ = 7750.0 kgm−3, elastic compliance sE11 = 16.4×10−12

m2 N−1, dielectric constant ϵT
33 = 1700ϵ0, piezoelectric constant

d31 = 171×10−12 pCN−1). The dimension of the unit cell we use
here has Lb = 10 mm, Lp = 9 mm, h = 1.6 mm, hp = 0.9 mm,
as labeled in Fig. 1. As the first step, we produce a dataset by
conducting the numerical simulation. According to Hagood and
von Flotow [34], the normalized effective modulus of shunted
piezoelectric patches Eeff = Es/Ed can be analytically obtained in
function of the NCR [11]. When λ approaches to −(1− k231) from
small negative values, the effective modulus approaches positive
infinity. However, when λ approaches to −(1 − k231) from large
negative values, the effective modulus is changed from a positive
value to a negative value, and eventually approaches negative
infinity, where k31 denotes the electromechanical coupling co-
efficient. Thus, to better learn the mapping relation of effective
modulus of piezoelectric patches, we intentionally sample more
frequently when NCR is close to the instability limit. The distri-
bution of the sample data density as functions of the frequency
and negative capacitance is shown in Fig. 2(b)
3

Fig. 3 shows the schematic of our multiple layer perception
(MLP) neural networks and their assembly to form the global
transfer matrix prediction network for a user-defined target dy-
namic behavior. As illustrated in Fig. 3(a), a MLP network is
trained to learn the physics within a unit cell. Thousands of work-
ing frequencies ω and NCRs λ are imported into FEM simulations
in sequence, and therefore we can numerically calculate the com-
ponents of the corresponding transfer matrix Q that determines
dynamic behavior of the metabeam. Since effective Young’s Mod-
ulus change rapidly as NC approach some certain critical value,
elements of transfer matrix increase/decrease rapidly as well. The
working frequencies and electrical impedances are used as input
datasets, while the corresponding transfer matrices are used as
output datasets. Then these input and output dataset are fed into
the MLP model, allow it to learn the mapping of a metabeam
unit from frequency and impedance to the corresponding transfer
matrix. Similar to effective Young’s Modulus, elements of transfer
matrix experience discontinuity from negative infinity to infinity
(or vice versa). If we train a single neural network to predict
dynamical response of a broad range of NCRs, the neural network
would potentially lead to a poorly trained model since most of ML
algorithms assume inputs in continuous spaces. To circumvent
the unnecessary penalty to NN accuracy, we trained 2 neural
networks: one corresponding to softening circuit and the other
to stiffening circuit. We generated 5000 data samples each for
softening and stiffening circuits, which are split into 3 distinct
groups: 80% samples for training, 10% for validation, and the rest
10% for testing. The training data are used to train the network by
optimizing parameters within neural network, while the valida-
tion dataset serves for checking and avoiding the overfitting issue,
and the testing dataset examines the prediction accuracy of the
network. The network consists of four layers, i.e., one input layer,
two hidden layers, and one output layer. The network training
is achieved through standard back propagation algorithm [30].
After this MLP network being well trained, we assemble multi-
ple neural networks to determine the global transfer matrix via
Eq. (3) to predict the dynamic response along the entire active
beam system, as sketched in Fig. 3(b). Assuming the metabeam
consists of n units, given the input responses at the left end of the
bar, the wave frequency, and the output responses at the right
end of the metabeam, the design parameters (i.e., the negative
capacitance of each unit) are obtained.

In particular, the network is generated and trained by the

fitnet function in MATLAB, and the Levenberg–Marquardt (LM)
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Fig. 2. (a) Normalized effective Young’s modulus of piezoelectric patches with different negative capacitances. (a) The data distribution with different negative
capacitances and frequencies.
Fig. 3. The ML network for prediction of global transfer matrix components. (a) The sketch of the ML network for a metabeam unit: the electrical impedance and
the frequency are imported into COMSOL simulation, from which the transfer matrix is calculated. (b) The ML networks to obtain the global transfer matrix based
on Eq. (3).
w
m

optimizer is adapted to achieve accurate prediction of the transfer
matrix. LM optimization, also known as the damped least-squares
method, is a nonlinear optimization algorithm which is a com-
bination of gradient descent and the Gauss–Newton. The update
rule for LM optimization is expressed as:

wi+1 = wi − (H + λ × diag(H))−1d (4)

where wi is the weight within ith layer, d stands for deriva-
tive and H stands for Hessian. Levenberg–Marquardt optimizer
has been proven to be more precise comparing with most of
other common backpropagation algorithms, including stochastic
gradient descent (SGD) and Adams [35].

The history of the obtained the mean square error (MSE) over
the number of the samples is illustrated to training process of the
4

network shown in Fig. 4(a). The MSE is defined as

MSE =
1
N

∑
n

(f⃗ npredict − f⃗ ntrue)
2 (5)

here f⃗ npredict is the predicted 16 components of the transfer
atrix from the ML network, f⃗ ntrue is the values from the FEM, and

N is the total number of the samples in an epoch. The structure of
our MLP network is given as [2 30 30 16] neurons in each layer,
while the 2 neurons in the input layer represent NCR and wave
frequency, and the 16 neurons in the output layer represent for
16 transfer matrix elements. It is noticed that the network is well
trained since the MSEs of training and validation data are very
small after 300 epochs’ training. The testing errors of the network
are presented in Fig. 4(b). We can see that most of relative
error lie under 0.002%, which means that the neural network has
reached extreme level of precision. The reason we pursue this



J. Chen, Y. Chen, X. Xu et al. Extreme Mechanics Letters 55 (2022) 101827

e
s
r
a

l
w
D
p
p
w
c
c
f
m
s
f
u
n
p
c
c
o

r
s
e
b

C

Fig. 4. (a) The history of the obtained MSE values over the number of the samples to illustrate training process of the ML network. (b) Histogram of the relative
rror for the testing data samples. The relative error here is defined as x =

∑
n((f⃗

n
predict − f⃗ ntrue)/f⃗

n
true). The testing data samples here include testing samples for both

oftening circuit network and stiffening circuit network. (c) Comparison of the ML predicted Q11 component of the transfer matrix for softening circuits with the FEM
esults. (d) Comparison of the ML predicted Q11 component of the transfer matrix for hardening circuits with the FEM results. The corresponding The R2 deviations
re indicated.
evel of precision is that we need to performmatrix multiplication
hile concatenating matrices to obtain global transfer matrix.
uring multiplication, any small error would be amplified and
ropagate through the entire active metabeam system, and thus
rovide inaccurate prediction of metabeam dynamics. The error
ould continue to accumulate and amplify as we perform further
alculations (as we will do in the inverse design section). We
ompared our current model with standard regression method,
or instance, linear regression and ANN trained with Adam opti-
izer, and result shows that the proposed MLP model is indeed
uperior than other methods (see more details in Appendix). This
urther emphasize our choice of using LM optimizer, which allow
s to raise prediction accuracy to an extreme level for a neural
etwork. Fig. 4(c) and (d) show the comparison between ML
redicted Q11 component of the transfer matrix and the FEM
alculated one. R2 deviations in both stiffening and softening
ircuits are 1.0000, which further testify the extreme precision
f our trained network.
To validate the accuracy of the ML network, the mechanical

esponses of a metabeam system with NCs at 10 kHz will be
tudied by calculating ML-based global transfer matrix. The two
xamples of the active metabeam with ten distributed NCs in
oth softening and hardening circuits are considered as:

ase 1 : [λN ] =

−(1.500, 1.400, 1.300, 1.200, 1.100, 1.000, 0.990,
0.980, 0.970, 0.960)

Case 2 : [λ ] =
N

5

−(0.940, 0.930, 0.920, 0.910, 0.900, 0.890, 0.880,
0.870, 0.860, 0.850)

with boundary condition M0 = 0, F0 = 1, M10 = 0 and F10 = 0.
The state vectors ξ in the metabeam system from both network
predictions and the direct FEM simulations are shown in Fig. 5.
The distribution of nodal number across the beam is defined in
Fig. 5(a). The distributions of nodal deflection, nodal rotational
angle, nodal bending moment and nodal shearing force are shown
in Fig. 5(b) for case 1 and in Fig. 5(c) for case 2, respectively. The
red dashed curves are calculated from the FEM simulations, while
the gray dots are from the ML networks. The predictions from
the ML networks are in excellent agreement with those from FEM
simulations, meaning that the network is well trained and ready
to predict the dynamic behaviors of the active metabeam if the
frequency and negative capacitance array are given.

3. Fast inverse design by ML-based surrogate optimization

The proposed ML framework is then employed on the inverse
design of the 1D active metabeam for a user-defined output wave
responses within the desired wave frequency range to realize
the multifunctional wave control abilities. The most remarkable
characteristic of this approach lies in its ability to build predictive
models of complex dynamical systems from the use of basic
(previously trained) networks. Fig. 6 illustrates the well-trained
ML model as a surrogate model to replace the FEM simulations
in the traditional optimizer, making the inverse design extremely
fast. The objective of the training is to achieve desired wave
transmissions at different frequencies by identify the NCs while
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Fig. 5. Comparison of state vectors ξ prediction of the active metabeam from between the ML network and the FEM simulations. (a) The nodal numbers defined in
he metabeam system. (b) The ξ distribution of nodal deflection w, rotation angle θ , bending momentum M and shearing force F in case 1 and, (c) the ξ distribution
n case 2.
Fig. 6. Comparison of state vectors ξ prediction of the active metabeam from between the ML network and the FEM simulations. (a) The nodal numbers defined in
he metabeam system. (b) The ξ distribution of nodal deflection w, rotation angle θ , bending momentum M and shearing force F in case 1 and, (c) the ξ distribution
n case 2.
eeping the dimension and the length of the active metabeam
nchanged.
Specifically, we apply genetic algorithm (GA) on the trained

etwork to inverse design a multiple-functional waveguide of
6

the metabeam composing of 10 independent active NC units.
The wave transmission for the frequency range (from 1 kHz to
10 kHz) can be obtained by employing the global transfer matrix
from ML networks. As an inverse design example, the 10 NCs
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Fig. 7. (a) Time history of the fitness evaluation values from the ML-based surrogate optimization and FEM-based classical optimization. (b) Transmission profile in
function of the frequency from ML network prediction and FEM simulations according to the objective function q1 . (c) Harmonic wave transmission in the active
etabeam at different frequencies.
n the active metabeam are treated as design parameters for the
argeted wave transmission, which is expected to be maximized
t frequencies 3 kHz and 8 kHz, while minimized at frequencies
, 6 and 9 kHz, respectively. To the end, the objective function of
he optimization problem can be described as

in: q1(λ1, λ2, . . . , λ10) = T (1) − T (3) + T (6) − T (8) + T (9) (6)

here the wave transmission here is defined as
= 20 log(Uout/Uin) with Uout and Uin being the output and

incident displacement amplitudes in the host beam. At this point,
10 identical NNs are concatenated to model the dynamic behavior
of the metabeam, and the NCs are determined by solving Eq. (3).
It should be mentioned that the metabeam with different NCs
distribution could be generated from the inverse surrogate op-
timization. However, the physics mechanism will be the same
unregard of NC’s distribution across the metabeam.

Starting with an initial guess for the negative capacitance,
the ML algorithm iteratively searches for the optimal NCs based
on the objective function estimated from the ML model instead
of the FEM simulation. The process is implemented iteratively
and the agent will continue exploring the design space until the
termination condition (fitness evaluation q is converged to the
minimized value) is reached. The design process is completed
once the dynamic behavior of the synthesized metabeam satisfies
a user-defined wave transmission tolerance. To demonstrate the
advantages of the ML-based surrogate optimization, the compar-
ison of the optimization processing time between the ML-based
surrogate optimization and the classical FEM-based optimization
is shown in Fig. 7(a). It can be concluded that the surrogate
optimization based on the ML trained networks only need 100 s
to reach an optimal design, however, the classical optimization
takes at least 9000 s to find an optimal design. Therefore, the sur-
rogate optimization can significantly speed up the inverse design
to locate the active metabeam with different NCs for user-defined
7

wave functions. As a result, the proposed ML-based approach is
preferred whenever an online inverse design is necessary and
the behavior of the metamaterial is well-understood. To evaluate
the accuracy of the proposed ML-based optimization, the wave
transmission behaviors of the metabeam in the desired frequency
range from the ML network are presented in Fig. 7(b), in which
the ten NCs are inversely determined as −[1.0481, 0.9531, 0.9450,
1.0258, 0.9950, 0.8710, 0.9850, 0.9693, 0.9328, 0.9447]. The trans-
mission peaks at frequencies 3 and 8 kHz are evidenced and the
transmission dips at frequencies 1, 6 and 9 kHz are observed,
which indicates that the surrogate optimization does obtain an
optimal design to meet the target. For comparison, the exact wave
transmission of the metabeam with the predicted NCs are also
calculated from FEM simulations, which are plotted as the red
solid curve. Very good agreement on the wave control behavior is
clearly seen. To quantitatively demonstrate wave propagation of
the metabeam at interested wave frequencies, the harmonic wave
analyses are conducted at discrete frequencies, which is shown
in Fig. 7(c). The wave propagation is forbidden at 1, 6 and 9 kHz,
and most of the wave energy have been transmitted through the
active metabeam with 10 units. The wave attenuation can be
attributed to the multiple scattering attenuation mechanism in
the resulting heterogeneous beam caused by connecting to differ-
ent NCs with softening and hardening circuits. However, for the
frequencies at 3 and 8 kHz, the NCs could not produce any hin-
drance to flexural wave propagation with high transmission. To
closely observe wave fields in 7(c) at frequencies 3 and 8 kHz, the
wave transparency can be interpreted as the phononic cavity and
Fabry–Perot resonance in this layered medium, respectively [36–
38].

Different from the passive metabeams, the active metabeams
can reconfigure their wave control functionalities by electrically
changing NCs’ circuits without the need of the change of mi-
crostructures. To accomplish this reconfigurable wave control
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bilities, a modified electrical system with different NC’s distribu-
ion needs to be quickly determined. However, conventional al-
orithms are computationally intensive and becomes an obstacle
oward practical applications. On the other hand, our proposed
L approach could meet this critical need and be used to identify

his inverse solution in real time and fast fashion. For an instance,
he new wave control function of the metabeam is to filter out the
aves at frequencies 1 and 9 kHz, but allow the wave at 7 kHz to
ass through the system with little decay. Based on the surrogate
ptimization, the optimization objective function is defined as:

in: q2(λ1, λ2, . . . , λ10) = T (1) − T (7) + T (9) (7)

here the 10 NCs are inversely determined as −[0.9760, 0.9441,
.9013, 0.9930, 1.0449, 0.8692, 0.9075, 1.0229, 0.9284, 0.9970].
he wave transmission for the optimized metabeam calculated
rom ML model and FEM simulations are shown in Fig. 8(a).
he wave control function of the metabeam is indeed realized
y finding the wave transmission peak at 7 kHz and the wave
ransmission dips at 1 and 9 kHz and very good agreement is
bserved in comparison with the physical model. The harmonic
ave simulation is also conducted to demonstrate this wave
ontrol function, as shown in Fig. 8(b).
It is worth mentioning that the differences between predic-

ions and FEM in Figs. 7 and 8 are much larger than results
hown in Fig. 6. The reason behind it is that we defined wave
ransmission as T = 20log(Uout/Uin). The difference mostly occurs
t region below −20 dB, where the error is almost negligible if
e define it as T = Uout/Uin. Furthermore, error accumulates
s we assemble the global stiffness matrix, so that even a small
rror in predicting matrix element can be seen from the wave
ransmission in some cases.

To probe the dynamics wave phenomenon from NC technique,
nd to further examine the robustness of our proposed approach,
e conduct time domain simulation, in which we excite flexural
aves in the metabeam using piezoelectric actuators. We apply
tone burst signal centered at 9 kHz and attempt to design NC
ircuits that gives specific wave transmission. We independently
etrieve the NC parameters for T (9) = 1.0, 0.8, 0.6, 0.4, 0.2, 0.0.
Following the same scheme as in previous sections, we can obtain
the NCR values from GA optimization as listed in Table 1. We then
conduct the FE simulation with these NCs and check the physical
response. The comparison between input signals and the detected
pulses are shown in Fig. 9. As illustrated in Fig. 9, the transmitted
wave signals are indeed our target wave responses from the ML.

Previous examples demonstrate our model’s ability to manipu-
late wave transmission in a discrete manner. We may also extend
it to a continuous domain by inversely designing the bandgap in a
8

given frequency interval (fmin, fmax). The objective function of the
optimization is defined as:

min: q3(λ1, λ2, . . . , λ10) =

∫ b

a
T (f )df

s.t. T (f ) > Tthreshold ∀ f ∈ [fmin, a] ∪ [b, fmax]

(8)

where a and b are the lower bound and upper bound of the
desired frequency region with minimized wave transmission, re-
spectively. Tthreshold here is set to −2 dB. fmin and fmax are the lower
bound and upper bound of the working frequency, in this case,
1 kHz and 10 kHz, respectively. In this study, we choose a = 3
kHz and b = 7 kHz. The optimization result shown in Fig. 10
indeed illustrates the accuracy of the proposed inverse design as
the continuous transmission dip can be observed, in which the
ten NCRs are inversely determined as −[0.9760, 0.9441, 0.9013,
0.9930, 1.0449, 0.8692, 0.9075, 1.0229, 0.9284, 0.9970].

Another interesting application of the inverse design is to
achieve the rainbow trapping effect in the designed gradient
index metabeam. Rainbow trapping refers to the wave phe-
nomenon of separating different frequency wave components and
spatially trapping them in different positions across the active
metabeam [39–41]. By assigning the target cutoff frequencies in a
gradient fashion, the objective function of the inverse design can
be expressed as follows:

min: q4(λ1, λ2, . . . , λ10) = |fc − f̂c | (9)

where fc and f̂c are 1 × 10 vectors of the predicted and target
utoff frequencies distribution from first unit cell to the last,
espectively. In the study, the target cutoff frequencies linear dis-
ribution along the metabeam is assumed in Fig. 11(a). Note that
he cutoff frequency of the first unit cell is not plotted because
t is not within the working frequency of our physics-guided
eural network. The predicted transfer matrix from the physics-
uided neural network, together with the Floquet–Bloch theorem,
s used to inversely determine the band structure associated with
given unit cell. To quantitatively validate the rainbow trapping
ffect, wave displacement distribution fields in the metabeam
nder harmonic loading are illustrated in Fig. 11(b) over different
requencies, in which the ten NCs are inversely determined as
[1.0512, 0.9512, 0.9505, 0.9499, 0.9494, 0.9489, 0.9486, 0.9482,
.9480, 0.9479]. As shown in the figure, it is evident that the
lexural wavelength gradually decreases in the metabeam at all
requencies., which renders a spatial compression of the flexural
ave. It is worth mentioning that rainbow trapping effect has
een validated in Ref. [33]. It can be concluded that the ML-
ased optimization is convenient, fast and accurate for realization
f inverse design of reconfigurable and multi-functional wave
evices.
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Table 1
10 Negative capacitance ratio (NCR) for corresponding wave transmission.
Wave NCR (from left to right)

transmission 1 2 3 4 5 6 7 8 9 10

1.0 −1.0033 −1.0030 −0.9825 −0.9823 −0.9669 −0.9669 −0.9652 −0.9647 −0.9627 −0.9618
0.8 −1.0099 −1.0026 −0.9638 −0.9861 −0.9558 −0.9702 −0.9822 −0.9641 −1.0134 −1.0038
0.6 −0.9510 −1.0078 −0.9510 −0.9510 −1.0510 −0.9510 −0.9632 −0.9510 −0.9510 −1.0447
0.4 −0.9512 −0.9539 −1.0450 −0.9824 −0.9824 −0.9609 −0.9978 −1.0055 −0.9635 −1.0444
0.2 −0.9511 −1.0430 −0.9510 −0.9607 −0.9607 −0.9510 −1.0422 −0.9811 −0.9518 −1.0119
0.0 −1.0435 −1.0278 −0.9786 −0.9969 −0.9969 −1.0335 −1.0420 −0.9848 −0.9673 −1.0229
Fig. 9. Time domain simulation of flexural waves in the target active metabeams with different transmissions. A n = 5 cycles tone burst signal centered at f =

kHz is generated. The input voltage (violet) and output velocity (red) are normalized by their maximum values. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
Fig. 10. Wave transmission from the continuous bandgap optimization of the
active metabeam.
9

4. Conclusion

This study presents a physics-guided network based on ma-
chine learning (ML) algorithms for the efficient design of ac-
tive metabeams. The physics-guided network is demonstrated
to achieve user-defined dynamic wave functions and target the
inverse design of non-periodic active metamaterials. The transfer
matrix which relates the wave field and its derivative to govern
the fundamental wave propagation in the metabeam will be
embedded in the ML network to build up the complex mapping
between the input and output wave responses. The ML-based
neural network is proposed to learn the dynamic behavior of a
class of metabeam units so that the prediction of the dynamic
response for any unit in such class could be obtained without
the need of time-consuming numerical simulation. The most
remarkable characteristic of this approach lies in the ability to
build predictive models of complex dynamical systems from the
use of previously trained networks that capture the dynamics
of the metabeam. In this approach, the NN replaces conven-
tional numerical simulations to solve wave propagation problem
in the metabeam. Once the NNs are concatenated by assem-
bling these transfer matrices together to build the global transfer
matrix, the transmission response of the whole system can be
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obtained by following assigned input conditions and material
and NC properties. During the inverse design stage, the NCs of
each individual unit are treated as the design parameters to be
solved by employing the surrogate optimization to minimize the
difference between the responses estimated from the concate-
nated networks and the targeted wave responses. This approach
is validated through a system consisting in a 1D active metabeam,
and promising multifunctional wave control abilities are obtained
to demonstrate the robustness of the proposed approach. The
surrogate optimization based on ML networks can significantly
speed up the inverse design while keeping the reconstructed
transmission curve agree well with the target at the same time,
which is ten time faster than the conventional optimization.
The ML-guided surrogate optimization developed for inverse de-
sign of active metamaterials with a high dimension (2D or 3D)
can find important applications in fast inverse design of various
multi-functional metamaterials.
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ppendix A. Assembly of global stiffness matrix

A stiffness matrix D(ω, λN ) of a unit with negative capacitance
ratio λN relates the force vector f(ω, λN ) = [−ML, −FL, MR, FR]T
nd displacement vector u(ω, λN ) = [wL, θL, wR, θR]

T as

f(ω, λN ) = D(ω, λN )u(ω, λN ) (A.1)

and the stiffness matrix D(ω, λN ) can be obtained from the trans-
fer matrix Q(ω, λN ) via:

D =

[
DLL DLR

]
=

[
Q−1

12 Q11 −Q−1
12

−1 −1

]
(A.2)
DRL DRR Q21 − Q22Q12 Q11 Q22Q12

e

10
ith Q11, Q12, Q21 and Q22 being the submatrices of the transfer
atrix Q:

=

[
Q11 Q12
Q21 Q22

]
(A.3)

As is shown in Fig. 1(a), PMLs have been added to the left
end and right end of the beam system. The boundary conditions
representing these PMLs can be expressed as :

fGL = DGLuGL

fGR = DGRuGR

with

DGL = −EIκ
[

iκ −1 − i
(1 − i)κ2 iκ

]
DGR = −EIκ

[
iκ 1 + i

−(1 − i)κ2 iκ

]
where κ =

4√
ρSω2/EI is the wavenumber of the substrate beam

at frequency ω, S is the area of its cross section, EI is its bending
tiffness, the subscript GL or GR stands for the left or right end
f the global system, respectively, and fGL = [MGL, FGL]T , uGL =

wGL, θGL]
T , fGR = [−MGL, −FGL]T and uGR = [wGR, θGR]

T .
Then, by using the continuous boundary conditions at the

nterfaces in the system, we can assembly the stiffness relation
ogether to get the global stiffness relation that relates the global
odal force fG and global nodal displacement uG as

= Ku (A.4)

ith

= [fGL 0 0 · · · 0]T

= [uL1 uR1 uR2 · · · uRN ]
T

and the global stiffness matrix K as

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DGL + D1
RR D1

LR 0 · · · 0 0

D1
RL D1

RR + D2
LL D2

LR

. . .
. . . 0

0 D2
RL D2

RR + D3
LL

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . .
.
.
.

0
. . .

. . .
. . . DN−1

RR + DN
LL DN

LR

0 0 0 · · · DN
RL DN

RR + DGR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.5)

Without loss of generality, we can assume that the system is
T
xcited by a point force fE , then we can write fGL = [0, fE] , then
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Fig. 12. The R2 regression by using (a) linear regression and (b) ANN trained with Adam optimizer.
rom the global stiffness relation Eq. (A.4), we can calculate the
lobal nodal displacement, from which we can finally obtain the
ave transmission and the mode shape of the system.

ppendix B. Comparison of prediction accuracy with standard
ethods

We compare current ML model with linear regression and
NN trained with Adam optimizer. The R2 coefficients of lather
wo can be found in Fig. 12. As shown in figure, the linear
egression model is unable to accurately predict the exact trans-
er matrix. Meanwhile, ANN with Adam optimizer can predict
he matrix elements accurately as R2 coefficient up to 0.997.
owever, this is not sufficient for predicting the transfer ma-
rix since the error from the predicted matrix would quickly
ccumulate and amplify as we perform further calculations to
redict resulting wave phenomena. For this reason, we choose
o train ANN with Levenberg–Marquardt optimizer to minimize
rediction error.
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