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Elastic wave mitigation covering multiple broad bands is highly demanded for modern applications in wave control. Here, we re-
port both theoretically and experimentally on the complete investigation of a series of dynamic phononic crystal beams integrated
with circuit networks decorated with both spatial and temporal modulation. They are capable of practicing multi-band flexural
wave mitigation with convenient tunability and broadband operability. The electromechanical interaction through piezoelectric
shunts allows for energy exchange between electrical and mechanical modes and gives rise to Bragg forbidden bands. The key
contribution of this work lies in the inclusion of spatial and temporal modulation that is applied solely in circuit networks and
improves wave mitigation abilities in terms of operable frequency range. Specifically, the spatial modulation of circuit network
effectively broadens the wave attenuation band by creating space-Bragg forbidden bands for electrical modes and thus extending
the electromechanical coupling range. The temporal modulation, on the other hand, generates time-Bragg band gaps by linearly
translating the fundamental electromechanical mode in terms of frequency. More importantly, both seemingly complicated ap-
proaches are simply based on the convenient tuning of a single resistor in the circuit network. This advantage later facilitates the
experimental evidences of the transmission characteristics of the spatially and temporally modulated configurations. We believe
the dynamic phononic crystals are highly promising for the next-generation applications such as tunable multi-band filters.
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1. Introduction

Manipulation of elastic waves with periodically structured
lattices has been attracting increased attention for its poten-
tial applications in mechanical wave mitigations and vibra-
tion attenuations [1-3]. The central point is to generate for-
bidden bands covering the frequencies of interest [4]. There
exist two general approaches to realizing forbidden bands:
mechanical metamaterials and phononic crystals (PhCs).
Both of them rely on carefully tailored periodic structures
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but differ fundamentally in the working mechanism. Me-
chanical metamaterials operate on the basis of local reso-
nances of subwavelength units and thus delivers only nar-
rowband wave mitigation at their resonances [5-9]. PhCs, on
the other hand, features periodic structural inclusions whose
geometrical scale is comparable to operating wavelengths
[10-14]. They allow in general for much broader forbidden
bands than metamaterials and appear to be more favorable
for practical applications. Thus far, most of the existing ef-
forts on mechanical PhCs have been focused on designing
passive structures for manipulating elastic waves. This in-
evitably hinders the broadband operability and reconfigura-
bility.

To address the above fundamental limitation, standalone
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piezoelectric (PZT) shunts have been extensively adopted as
an efficient way to actively manipulate elastic wave prop-
agation [3, 15-20]. Thanks to the convenient tuning of
the mechanical properties of PZT materials by controlling
the impedance of shunting circuits, exotic wave phenomena
and applications have been proposed, such as programmable
metasurfaces [21-23], asymmetric wave propagation [24-26]
and so forth. Recently, researchers proposed that connect-
ing circuit network to PZT-based PhCs can greatly bene-
fit to broadband wave mitigation and vibration suppression
[27-29]. The key point is that the interactions between the
electrical and mechanical degrees of freedom in this hy-
brid phononic crystal (HPhC) result in broad Bragg band
gaps. Theoretically, a multi-degree-of-freedom electric net-
work could provide a new avenue to create electromechanical
energy exchange and therefore attenuate vibrations in addi-
tional frequency ranges. The recent efforts on HPhCs reveal
that the interactions of electrical and mechanical modes cor-
respond to mode veering or locking depending on the group
velocities of the coupled modes [29, 30]. Bergamini et al.
[29] also experimentally validated the broadband wave miti-
gation behavior of HPhCs with alternating inductors . A dig-
itally programmable HPhC was then realized with tunable
mechanical properties by integration of electrical and me-
chanical parts [31]. Two distinct external circuit networks
connected to a PZT-based beam, the LC-based high-pass and
band-pass networks, were suggested [32]. In addition to flex-
ural waves, Flores Parra et al. [33] proposed a HPhC for con-
trolling longitudinal waves. The realization of interactions
between longitudinal and electrical modes is through mul-
tiple pairs of PZT patches, which enables tunability. Very
recently, adaptive and tunable nonreciprocal propagation of
elastic wave in HPhCs is proposed by Zheng et al. [34] via a
nonreciprocal circuit network. The resulting forbidden band
is attached with distinct attenuation characteristics in oppo-
site propagation directions.

In this work, we first revisit and enrich the elastodynamic
behavior of HPhCs by deepening the understanding of the
multi-physical mechanism and then investigate a new dy-
namic phononic crystal with spatial and temporal modula-
tion in circuit networks [35-38]. Notably, the introduction
of modulation can dramatically improve the wave mitigation
performance in terms of the bandwidth and number of for-
bidden bands. The paper is organized primarily into two sec-
tions. In the first section, we establish a comprehensive theo-
retical model with the transfer matrix method and a discrete
representation to theoretically characterize the wave dynam-
ics of a HPhC with a monatomic circuit network. Its trans-
mission characteristics are then examined by the comparison
of numerical simulations and experimental demonstration.
In the second section, we propose a new dynamic phononic

crystals (DPhC) with spatially and temporally modulated cir-
cuit networks to showcase the unprecedented wave mitiga-
tion. Dispersion analyses are conducted to reveal additional
interactions of mechanical and electrical modes for creating
new band-gaps at different frequency ranges. Numerical sim-
ulations and experimental testings are then carried out to con-
firm the predicted wave dynamics.

2. Hybrid phononic crystals with uniform cir-
cuit network

The physical construction of the mechanical parts of HPhCs
with a uniform circuit network and the DPhCs with modu-
lated circuit networks is shown in Fig. 1a. A periodic array of
PZT patches are bonded on an aluminum host beam. These
PZT patches are shunted with external electrical nodes. The
nodes are then interconnected through inductors and hence
constitute a circuit network. The HPhC decorated with uni-
form circuit network is first schematically depicted in Fig.
1b, with Fig. 1c showing the physical circuit components
to enable the tunable synthetic inductor by a digital poten-
tiometer [31]. There are two degrees of freedom in the one-
dimensional HPhC with w being the flexural displacement
and V the voltage of node. While w corresponds to the flex-
ural mode, V corresponds to the electrical mode propagating
in the circuit network, a second-order transmission line. The
two modes are coupled through the electromechanical cou-
pling of the PZT materials. Throughout the paper, the collec-
tive behaviors of two coupled modes are investigated based
on unit cell analyses with periodicity, as shown in Fig. 1d.

2.1 Dynamic transfer matrix method

First, we start with analytically deriving the dispersion re-
lation of the HPhC with a uniform inductor-based network
using transfer matrix method (TMM) [34]. The HPhC can
be divided into two sections. While section A of the beam
includes a shunted PZT patch, section B is purely an alu-
minum host beam (ρs = 2700 kg/m3, Es = 76 GPa). The
three-dimensional problem can be simplified into a two-
dimensional one using plane-stress assumptions. Since the
upper surface of PZT element is free, the traction on it is
assumed to be zero. The relationship of the electrical and
mechanical responses in the PZT material can be described
as [39]

S 1 = S E
11T1 + d31E3,

D3 = ϵ
T
33E3 + d31T1,

(1)

where T1 and E3 are the horizontal stress and the electrical
field in the thickness direction of the PZT element. S E

11 =
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Figure 1 a Photo of the mechanical part of the PZT-based HPhCs and DPhCs. b Schematic of the HPhC with a uniform circuit network. c Circuit-enabled
tunable synthetic inductor, where Rdp is a digital potentiometer controlled by an external micro-controller (Arduino Mega 2560), The effective inductance is
determined as L = R3CL/Rdp, where all resistors are the same and valued as R. d Schematic of the unit cell. The host beam is made of aluminum. The PZT
patches are PZT-5A. e Discrete representation of the HPhC.

−1.64× 10−11 Pa−1, ϵT33 = 1900 and d31 = −1.71× 10−10 C/N
represent compliance coefficient at constant electric field, di-
electric coefficient at constant stress and electromechanical
coupling coefficient, respectively. Since the considered beam
is thin with respect to operating wavelengths, we follow the
Euler-Bernoulli beam theory and assume the harmonic so-
lutions w = w0ej(kx−ωt) and V = V0ej(kx−ωt) for mechanical
and electrical modes, respectively. This way, we define a
state variable vector Y = (w,w,x,M,Q)T, representing the
displacement, bending curvature, moment and shear force.
They are related according to

∂w
∂x
= w,x,

DA
∂w,x
∂x
= M + αV,

∂M
∂x
= −Q,

∂Q
∂x
= −ω2ρAw,

(2)

where α = d31wpzp/S E
11 denotes the mode coupling coef-

ficient between electrical and mechanical modes [34], and
the effective mass density and bending stiffness can be ex-
pressed, respectively, as ρA = ρswbts + ρpwptp and DA =

Es

(
wbt3

s
12 + wbtsz2

s

)
+ Ep

(
wpt3

p

12 + wptpz2
p

)
. Here, ρp and Ep are

the mass density and Young’s modulus (the inverse of S E
11)

of the PZT material, respectively. zs and zp are the distances
of the host beam and the PZT patch from their respective cen-

tral axes to the neutral axis of section A whose location can
be calculated by

z0 =
Eptp(tp/2 + ts) + Est2

s /2
Eptp + Ests

. (3)

When the PZT patch is deformed, the charge generated on
its top surface results in a current flowing into the circuit net-
work, i.e.,

I0 = −jωαJA(Yn′ − Yn). (4)

Similarly, the mechanical part of section B can be character-
ized by

∂w
∂x
= w,x,

DB
∂w,x
∂x
= M,

∂M
∂x
= −Q,

∂Q
∂x
= −ω2ρBw,

(5)

with ρB = ρswbts and DB = Eswbt3
s /12. Based on Eq. (2), the

transfer matrix form for section A can be written as

AA
∂Y
∂x
= BAY + JAV, (6)
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where AA = diag(1,DA, 1, 1), JA = (0, α, 0, 0)T and

BA =


0 1 0 0

0 0 1 0

0 0 0 −1

−ρAω
2 0 0 0


. (7)

The solution can be written in an exponential form as fol-
lows:

Yn′ = −C−1
A JAVn + FC−1

A JAVn + FYn, (8)

in which CA = A−1
A BA and F = eCAlp . Similar derivation can

be done for section B:

Yn+1 = eCB(ls−lp)Yn′ = HYn′ , (9)

in which CB = A−1
B BB with AB = diag(1,DB, 1, 1) and

BB =


0 1 0 0

0 0 1 0

0 0 0 −1

−ρBω
2 0 0 0


. (10)

The treatment on the electrical part is based on the Kirch-
hoff’s circuit laws. The electrical mode can be described with
periodicity by

In+1 = I0 + In, (11)

Vn+1 = −ZIn+1 + Vn, (12)

where Z = jωL is the impedance of the inductor in the circuit
network between the nodes of two adjacent PZT patches. In
particular, In represents the current from the PZT patch to the
external circuit network and reads

In = −jωαJA(Yn′ − Yn) − jωCpVn, (13)

with Cp = ϵ
T
33wplp/tp. In consideration of the interaction of

the mechanical and electrical parts, we define a global state
variable vector X = [Y,V, I]T. Combining Eqs. (8),(9),(11),
and (12), the relationship of global state variables at positions
xn and xn+1 can be represented by

MlXn =MrXn+1, (14)

where

Ml =


I 0 0

jωαJAH−1 0 1

0 1 −Z

 , (15)

Mr =


HF G 0

jωαJB −jωlp 1

0 1 0

 . (16)

with G = HFC−1
A JA −HC−1

A JA. As a result, we conveniently
obtain the transfer matrix given by

T =M−1
r Ml. (17)

According to the Bloch Floquet condition ejkls Xn = Xn+1, we
can plot the dispersion curves for the HPhC with a uniform
circuit network by solving the following eigenvalue problem
for the wave number k in terms of the angular frequency ω

[T(ω) − ejkls I]Xn = 0. (18)

2.2 Discrete model

In addition to the TMM based on the Euler-Bernoulli as-
sumptions, one can discretize the system using a spring-mass
representation [40, 41]; see Fig. 1e. The proposed model has
three degrees of freedom: the height of the mass wn, rotation
angle ϕn, and voltage Vn at the nth unit cell. In particular, the
mechanical lattice is modulated by a Hookean spring kh and
a torsional one kϕ. The coupling between the mechanical and
electrical chains is achieved through the electromechanical
coupling of the torsional spring. In this case, the constitutive
relation reads

Tn = kh(wn−1 − wn + lsϕn−1),

Mn = kϕ(ϕn−1 − ϕn) + keVn,

Qn = CpVn − ke(ϕn−1 − ϕn),

(19)

where Mn, Qn and ke ∝ α denote the bending moment, charge
and effective electromechanical coefficient for the discrete
model, respectively. Summing the shear forces in the vertical
direction yields a dynamical equation for wn:

meẅn = Tn − Tn+1

= kh(wn+1 + wn−1 − 2wn) − lskh(ϕn − ϕn−1), (20)

where me is the effective on-site mass. On the other hand,
summing the torques results in a dynamical equation for θn

Ieϕ̈n =Mn − Mn+1 − lsTn+1

= kϕ(ϕn+1 + ϕn−1 − 2ϕn) − ke(Vn+1 − Vn)

+ lskh(wn+1 − wn − lsϕn), (21)

where Ie is the effective moment of inertia. Last, according
to the Kirchhoff’s current law, we have

Vn+1 + Vn−1 − 2Vn − Lke(ϕ̈n − ϕ̈n−1) = LCpV̈n. (22)

Combining Eqs. (20)-(22), assuming harmonic solutions, and
defining U = (wn, ϕn,Vn)T yields the following generalized
eigenvalue problem:

DU = −ω2MU, (23)
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where the mass and dynamical matrices are, respectively, in
forms of

M =


me 0 0

0 Ie 0

0 Lke(1 − e−jkls ) LCp

 , (24)

D =


2khϵ(k) lskh(1 − e−jkls ) 0

lskh(ejkls − 1) 2kϕϵ(k) − l2s kh −ke(ejkls − 1)

0 0 2ϵ(k)

 , (25)

with ϵ(k) = cos kls − 1. Similar to Eq. (18), solving for
k in terms of ω gives the dispersion curves for the discrete
spring-mass representation. Note that in the continuum limit,
the discrete model can be reduced into a continuum govern
by the Timoshenko beam theory:

µe
∂2w
∂x2 − µe

∂ϕ

∂x
= ρeẅ,

De
∂2ϕ

∂x2 − ke
∂ϕ

∂x
+ µe(

∂w
∂x
− ϕ) = Ieϕ̈,

∂2V
∂x2 − Leke

∂ϕ̈

∂x
= LeCeV̈ ,

(26)

where the subscript “e” corresponds to an effective medium
representation [40, 41].

2.3 Dispersion curves of the hybrid phononic crystal

To validate the theoretical prediction, we conduct numerical
simulations using COMSOL Multiphysics. Periodic bound-
ary conditions with Floquet periodicity are designated on
both ends of the unit cell (Fig. 1d). The lattice constant
is ls = 12 mm. The widths of the host beam and the PZT
patches are selected to be wb = wp = 10 mm. Other geo-
metrical parameters are given by tp = 0.5 mm, ts = 2 mm,
lp = 10 mm. All the resistors are identical with R = 1000
Ω and CL = 470 nF. Note that throughout the paper, these
geometrical and material properties are unchanged except
for the tunable resistance Rdp that can tune L in space and
time. The comparison between the analytical and numerical
results is displayed in Fig. 2a. When the mode coupling is
turned off, α = 0, by disconnecting the external circuit net-
work and the PZT-based beam, the electrical and mechanical
modes are not coupled and hence independent. Their bands
simply intersect with each other; see the pink scatterers and
the inset in Fig. 2a. When the coupling is turned on, the
weak perturbation caused by the coupling opens a small gap
(mode veering) around the intersection at 7.5 kHz; see the
black scatterers and the inset in Fig. 2a. Away from the cou-
pling region, the curves remain nearly unaltered even in the
presence of the coupling. In addition, the analytical results

agree very well with the simulation, especially at low fre-
quencies, which well verifies the theoretical modeling. The
deviation at higher frequencies is understandable since the
Euler-Bernoulli beam assumption does not cover the shear
effect which becomes prominent when operating wavelength
becomes comparable to the beam thickness. Aside from the
flexural mode, we also observe a longitudinal mode with a
much greater group velocity. Since the electrical mode inter-
acts with the flexural mode through the symmetric bending of
PZT patches, its coupling with longitudinal modes is in gen-
eral forbidden. For the interpretation of the mode coupling,
we select six representative modes around the intersection
and plot their mode shapes in Fig. 2b. Several observations
can be made. First, the mechanical and electrical degrees
of freedom of the lower branch are in phase, while those of
the upper branch are out of phase. Second, in the vicinity
of the coupling frequency, modes are hybrid with compara-
ble mechanical and electrical strengths. By contrast, modes
are either mechanically or electrically dominant depending
on the frequency, owing to the vanishing coupling strength
outside the coupling region. Last, at the mechanically domi-
nant modes, such as A2 and C1, the electric field in the PZT
patch is not uniform along the thickness, since the nonzero
electric response is generated solely by the bending deforma-
tion of the host beam. The other four modes exhibit uniform
electric field, indicating the existence of electrical propagat-
ing modes in the circuit network.

2.4 Transmission characteristics of the hybrid phononic
crystal

To examine the performance of the mode veering caused by
the mode coupling, we numerically and experimentally in-
vestigate the transmittance of a finite HPhC with a uniform
circuit network. The geometric and material properties of
the host beam and the PZT patches are exactly the same as
those given in Fig. 1. We first study on the size effect of
the HPhC. As shown in Fig. 3a, two scenarios including
10 and 30 unit cells in the finite HPhC are considered when
L = 0.3 H. Straight observation indicates that a broad for-
bidden band featuring multiple transmittance dips appears
around the mode veering. Alternatively, the frequencies of
the transmittance dips can be theoretically determined by
solving |Ttotal(ω)| = |TN(ω)| = 0 where N denotes the num-
ber of unit cells. This is due to the fact that at transmittance
dips we ideally have

Xout = Ttotal(ω)Xin = 0, (27)

where Xin = (Yincidence, 0, 0)T denotes the incidence, and Xout

represents the transmission through the finite HPhC. Another
observation is that more unit cells lead to more transmittance
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Figure 2 a Dispersion diagram of the HPhC with uniform circuit network and L = 0.3 H. Black and red circles correspond to the numerical simulations with
(α , 0) and without (α = 0) the effect coupling between electrical and mechanical modes. Blue represents the analytically derived dispersion diagram using
Eq. (18) in the presence of the mode coupling. Six representative modes are highlighted. The inset highlights the difference between the cases with and without
the coupling. b Mode shapes of the selected six modes in a. The arrow size indicates qualitatively the relative strength of each degree of freedom. The color
map represents the normalized electric potential in the PZT patch.

a b c

Figure 3 a Numerical transmittance for finite HPhCs including 10 and 30 unit cells when L = 0.3 H. Three representative transmittance dips are highlighted
in the case of 30 unit cells. b Plots of the phases Arg(w) (black) and Arg(V) (red) at the three highlighted frequencies. c Experimentally measured transmittance
for a HPhC including 17 unit cells with various L.

dips. It can be understood that the transmittance dips are
caused by the global resonances of the finite HPhC. A longer
lattice supports more global resonances. Note that the forbid-
den band behavior due to the mode coupling is unaltered. To
interpret the resonances, without loss of generality, we take
the case of 30 unit cells as an example and plot the phase
distributions for w and V at three representative frequencies
in Fig. 3b. Two evident observations can be made. First, the
resonance away from the coupling point (mode A in Fig. 3a)
is dominated by the out-of-phase hybrid mode (mode B1 in
Fig. 2b), while for the resonance at the center of the coupling
region (mode B in Fig. 3a), the in-phase and out-of-phase
components, corresponding to the modes B2 and B1 in Fig.
2b are mixed with comparable strengths. As for the mode
C in Fig. 3a, the in-phase component dominates. Second,
bandwidths of dips are controlled by the coupling strength.
Specifically, resonances with mixed mode components ex-
hibit wider dips. This is due to the mode coupling at which
energy exchange occurs intensively between mechanical and

electrical modes.
To demonstrate the broadband flexural wave mitigation by

the HPhC, we conduct experimental measurement for cir-
cuit networks with various inductance, say L = 0.15, 0.225,
and 0.3 H. The PZT patches are bonded onto the host beam
through conductive epoxy. A function generator (Tektronix
AFG3022C dual channel arbitrary function generator) is used
to generate a 2-cycle broadband tone-burst signal which is
later amplified by a power amplifier (KROHN-HITE 7602M
wideband amplifier). To excite the flexural incidence from
the left, the amplified signal is then applied to a PZT actuator
0.11 m away from the first unit cell of the HPhC. A 3D laser
vibrometer (Polytec PSV-400) is used to measure the tran-
sient out-of-plane motion on the right side of the HPhC. The
collected time-dependent data are then converted in the fre-
quency domain by Fourier transform. As shown in Fig. 3c,
broad band gaps are evidently observed for both three cases.
Satisfactory agreement can be seen between the simulation
and experimental results. In addition, greater inductance
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leads to wave mitigation at lower frequencies with narrower
bandwidth, since the resonances all shift in accordance with
the electrical resonance frequency fres ∝ (CpL)−1/2. Note that
in the simulations, we add a resistor of R = 350 Ω between
adjacent nodes in each unit cell, in order to cover the exis-
tence of some parasitic resistance carried with the tunable
synthetic inductors in experiments. As a result, the trans-
mittance dips are of much smaller quality factors than the
numerical ones shown in Fig. 3a. Nevertheless, the experi-
mental demonstration still provides straightforward evidence
for the broadband wave mitigation functionality supported by
the HPhCs.

3. Dynamic phononic crystals with spatially
and temporally modulated circuit networks

The aforementioned HPhCs with uniform circuit networks
give rise to only one forbidden band centered at the cou-
pling frequency or band intersection. To further improve
the broadband performance, for instance multi-band mitiga-
tion, single band intersection is insufficient. In what follows,
we investigate the dynamical wave behavior of DPhCs with
both spatially and temporally modulated circuit networks, as
schematically shown in Fig. 4. The advantage of introduc-
ing circuit modulation instead of the mechanical counterpart
is two-fold. First, circuit modulation is readily achievable
with our programmable synthetic inductors and requires min-
imal inclusions and modifications of the mechanical beam,
which benefits for bettering tunability and reconfigurability
while maintaining structural integrity. Second, interactions

of electrical and mechanical modes of different orders are
activated. The coupled modes around those intersections ap-
pear and are the linear superposition of mechanical and elec-
trical eigenmodes with different intensity coefficients, which
can be analytically determined using perturbation methods
[30,35]. Based on the above considerations, multi-band wave
mitigation is possible and could be more favorable for future
applications.

3.1 Dispersion curves for spatial modulation of circuit
network

Figure 5a illustrates schematically a DPhC with the spatial
modulation (L1 , L2) of circuit network. To be more spe-
cific, the network features alternating inductors, which dou-
bles the lattice constant and makes the DPhC a diatomic sys-
tem. Other material and geometric properties remain unal-
tered with respect to the settings given in Fig. 1. The in-
equity in inductance leads to a Bragg-based band gap for
electrical modes. As shown in Fig. 5b, when the coupling
is switched off, two intersections can be seen. when the cou-
pling is turned on, the intersection occurs at lower frequency
turns into a mode veering between the fundamental flexural
band and the acoustical band of electrical mode. This is sim-
ilar to what we have mentioned in the last section. Interest-
ingly, the fundamental flexural band with positive group ve-
locity also interacts with the optical band of electrical mode
with negative group velocity, forming a mode locking around
6.5 kHz [30]. As a result, another Bragg band gap manifests
in addition to the veering-induced one discussed previously.
To interpret the mode coupling, we plot the mode shapes at

Figure 4 Schematic illustration of the spatial and temporal modulations of circuit network, which can generate more intersections between mechanical and
electrical modes (dashed circles) where the phase matching condition is satisfied.
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Figure 5 a Schematic of the DPhC with a spatially modulated circuit network. b Numerically obtained dispersion curves with and without effective mode
coupling when L1 = 0.39 H and L2 = 0.55 H. Other parameters remain unchanged as in the last section. Six representative modes are highlighted. c Mode
shapes of the highlighted modes.

some representative frequencies in Fig. 5c. As can be seen,
around the mode veering and locking, the higher-frequency
hybrid modes always exhibit out-of-phase V and w, while
the lower-frequency ones have in-phase V and w. Away from
the coupling points, modes are either mechanically or elec-
trically dominant.

3.2 Transmission characteristics for spatial modulation
of circuit network

Numerical simulation is conducted for a finite HPhC includ-
ing a spatially modulated circuit network and 17 unit cells.
Figure 6a presents the transmittance spectrum possessing
multiple dips. The attenuation now occurs within a wider
frequency range, compared to the uniform HPhC cases (Fig.
3). Again, we examine the phase distribution of the mechan-
ical and electrical modes in Fig. 6b. It is seen that the res-
onance modes with narrower bandwidths are dominated by
either out-of-phase (mode A) or in-phase (mode D) compo-
nents. While resonance modes around the coupling regions,
i.e., modes B and C, feature hybrid mode components and
exhibit lower quality factors due to the intensive energy ex-
change between electrical and mechanical modes, In the ex-
perimental demonstration, the only difference of the current
system from the previous one is the inequity in the values
of adjacent inductors L1 , L2. Following the same mea-
surement protocol, we observe good agreement between the
experiment and simulation in Fig. 6c. To account for the ex-
perimental parasitic resistance of tunable synthetic inductors,
a resistor of 350 Ω is introduced into each unit cell in the
harmonic simulation. As expected, the spatial modulation of
circuit network effectively broadens the applicable frequency
range for wave mitigation, owing to the occurrence of the ad-
ditional mode locking compared to the uniform case.

3.3 Dispersion curves for temporal modulation of cir-
cuit network

Selective mitigation bands can be achieved by the tempo-
ral modulation of circuit network, as it causes linear trans-
lations of dispersion curves in the frequency axis. Schemat-
ically illustrated in Fig. 7a, the circuit network now consists
of identical time-dependent inductors whose inductance is in
the form of a cosine function, i.e., L(t) = L0 + Lm cos(ωmt),
where Lm is the modulation magnitude and ωm is the mod-
ulation frequency. To obtain the dispersion curves for such
system, we first expand the harmonic solutions for both me-
chanical and electrical modes, under harmonic modulation,
in the forms

u =
+∞∑

q=−∞
uqej(ω+qωm)t, (28)

V =
+∞∑

q=−∞
Vqej(ω+qωm)t, (29)

where u = (u, v,w)T includes both longitudinal and flexural
displacements. In the eigenfrequency analysis, the beam sec-
tion of the DPhC with temporal modulation is modeled as an
isotropic elastic body by the use of the Navier-Lame equation

−(λ + µ)∇(∇ · u) − µ∇2u + ρsü = F, (30)

where λ and µ are the Lame constants, and F is an effective
body force. Following Eq. (30), the generic qth-order gov-
erning equation for the beam domain reads

−(λ + µ)∇(∇ · uq) − µ∇2uq − ρs(ω + qωm)2uq = 0. (31)

On the other hand, the generic qth-order governing equation
for the modulated circuit network is obtained, based on the
Fourier expansion and Kirchhoff’s current law, as

2Vq(cos kls − 1) − (ω + qωm)2L0wplp⟨D(q)
3 ⟩
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a b c

(kHz)

Figure 6 a Numerically obtained transmittance for a finite DPhC with spatially modulated circuit network (L1 = 0.39 H and L2 = 0.55 H) and 17 unit cells.
Four transmittance dips are highlighted. b Plots of the phases Arg(w) (black) and Arg(V) (red) at the four highlighted frequencies. c comparison between
experimentally measured transmittance and numerical prediction for the DPhC shown in a. In the simulation, a resistor of 350 Ω is connected in series to the
circuit component of each unit cell to accommodate the experimental parasitic resistance.

a b

c

Figure 7 a Schematic of the DPhC with a temporally modulated circuit network. b Numerically obtained dispersion curves based on Eqs. (31) and (32) in the
consideration of only first-order harmonics when L0 = 0.225 H and Lm = 0.1125 H. The mechanical part remains unchanged. Three types of mode veerings
are indicated, and the representative couplings are labeled, that is V+1 ∩ w+1 (yellow), V+1 ∩ w0 (red), and V+1 ∩ w−1 (green). Six representative modes for the
fundamental harmonics are highlighted. c Mode shapes of the highlighted modes.

−
∑
s,p

(ω + sωm)2 Lm

2
wplp⟨D(s)

3 ⟩ = 0, (32)

where ⟨·⟩ denotes averaging over the top surface of PZT
patches, and wplp⟨D(q)

3 ⟩ = Q(q) is the charge of qth-order gen-
erated on the PZT patch. Without loss of generality, here we
only consider the interactions between fundamental (q = 0)
and first-order harmonics (q = ±1) for brevity. As a result,
Eq. (32) can be recast in a matrix form

2(cos kls − 1)


V−1

V0

V+1

 = Q


Lm/2

L0

Lm/2

 , (33)

where

Q =


ω2Q0 (ω − ωm)2Q−1 0

(ω + ωm)2Q+1 ω2Q0 (ω − ωm)2Q−1

0 (ω + ωm)2Q+1 ω2Q0

 . (34)

The calculated dispersion curves for L0 = 0.225 H, Lm =

L0/2 = 0.1125 H, and ωm = 2π × 5 kHz are shown in

Fig. 7b. Straightforwardly observed is that the fundamen-
tal branches translate and duplicate linearly by ωm in the fre-
quency direction thanks to the harmonic modulation of the
circuit network. Also multiple mode veerings are induced by
the interactions among the considered harmonics. They also
perform linear translation of ωm when more harmonics are
taken into account. Specifically, the veerings between iden-
tical orders, i.e., Vq ∩ wq, highlighted in yellow in Fig. 7b,
show the strongest coupling strengths and therefore should be
capable of delivering efficient wave mitigation performance.
While the veerings formed by different orders, i.e., Vq ∩ ws,
q , s, exhibit much weaker coupling strengths as highlighted
in Fig. 7b. The interpretation of the mode veering can be
done in the same fashion as previously mentioned. We plot
the mode shapes mainly for the fundamental branches and
find the similar conclusions: away from the coupling point,
the modes are either mechanically or electrically dominated,
whereas in the vicinity of the coupling the modes are hybrid
and display in-phase and out-of-phase field profiles at lower
and higher frequencies; also see Fig. 7c.
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3.4 Transmission characteristics for temporal modula-
tion of circuit network

The expectation of the temporal modulation, as has been
pointed out by Fig. 4, is to form multiple Bragg band gaps.
To demonstrate this, 17 unit cells shown in Fig. 7a are used
to construct a finite DPhC with the same modulation param-
eters. Numerical simulation is carried out based on Eqs. (31)
and (33). As can be seen from the transmittance spectrum
shown in Fig. 8a, two separate band gaps mainly contributed
by V0 ∩ w0 and V+1 ∩ w+1 exist showing broadband charac-
teristics. Since the strengths of the veerings Vq ∩ ws, q , s
are underwhelming, their influence on the transmission spec-
trum is rather minor. The mode shape analysis is performed
in Fig. 8b for the selected four resonance dips in Fig. 8a.
The four resonances are all hybrid modes with in-phase and
out-of-phase components.

One of the key contribution of this work is the experimen-
tal evidence of broadband wave isolation characteristics by
the temporal modulation. To achieve time-dependent induc-
tance within each unit cell, we program with the external
micro-controller (Arduino Mega 2560) linked to a computer
to generate a time-varying resistance Rdp(t) varying at ωm in
cosine function of time; see Fig. 1c. This effectively re-
alizes the time-varying inductance L(t) = L0 + Lm cosωmt
illustrated in Fig. 7a. Note that the magnitude of Lm should
not be close to that of L0 in order to suppress potential cir-
cuit instability. Figure 8c shows the comparison between the
experiment and simulation, and satisfactory agreement is ob-
served, verifying the prediction for the temporal modulation.
Careful observation finds that the experimental dips are of
smaller quality factors, due to the fact that the distribution of
parasitic resistance cannot be properly estimated and accom-
modated in the numerical simulation. In addition, the evident
experimental deviations from simulation away from the band
gaps are due to the mode veering of higher-order harmonics
(second-order, etc), which are not covered by the numerical

analysis. Despite these minor discrepancies, the formation
of separate forbidden bands are still well distinguishable in
the vicinity of the predicted mode veerings. Given that the
exotic behavior relies solely on the modulation of the resistor
Rdp, we believe this controllable modulation can be practi-
cally deployed in situations where selective multi-band wave
mitigation is desired.

3.5 Higher-order temporal modulation of circuit net-
work

It is even possible to achieve higher-order temporal modula-
tion in the DPhC system. To clarify, we add an addition mod-
ulation component which makes L(t) = L0 + Lm1 cos(ωmt) +
Lm2 cos(2ωmt). Accordingly, the harmonic governing equa-
tions for the electrical parts given in Eq. (32) becomes

2Vp(cos kls − 1) − (ω + qωm)2L0wplp⟨D(q)
3 ⟩

=
∑
s,q

(ω + sωm)2 Lm1

2
wplp⟨D(s)

3 ⟩

+
∑
s,q

(ω + 2sωm)2 Lm2

2
wplp⟨D(2s)

3 ⟩. (35)

Figure 9a provides the dispersion diagram of the higher-
order temporal modulation, numerically retrieved based on
Eq. (35). For brevity, we again have considered only funda-
mental (q = 0) and first-order harmonics (q = ±1) and their
interactions. As can be seen, the fundamental branches are
translated linearly by ±ωm due to the first-order modulation
and by ±2ωm due to the additional second-order modulation.
As a result, five branches can be seen for the higher-order
modulation (red in Fig. 9a) unlike the singly modulated case
(blue in Fig. 9a) discussed in the previous section. Evidently,
multiple mode veerings appear. Among them, Vq ∩ wq pos-
sesses the greatest coupling strength and hence should be ca-
pable of delivering broadband wave mitigation for flexural
waves. Indeed, the transmittance spectra presented in Fig.

a b c

(kHz)

Figure 8 a Numerically obtained transmittance for a finite DPhC including temporally modulated circuit network (L0 = 0.225 H and Lm = 0.1125 H)
and 17 unit cells. Four transmittance dips are highlighted. b Plots of the phases Arg(w) (black) and Arg(V) (red) at the four highlighted resonance modes. c
Experimentally measured transmittance (red) for the HPhC with temporal modulation and its comparison with the corresponding numerical simulation (blue).
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a b

Figure 9 a Comparison between dispersion curves for first- and second-order temporal modulation, with the first-order modulation (blue) being
L(t) = L0 + Lm1 cos(ωmt) and the second-order one (red) L(t) = L0 + Lm1 cos(ωmt) + Lm2 cos(2ωmt). Here, L0 = 0.5 H, Lm1 = 0.25 H, Lm2 = 0.15 H,
and ωm = 2π× 5 kHz are selected for clear demonstration. b Numerically obtained transmittance spectra for both first- and second-order temporal modulation.
Both the finite DPhCs with various temporal modulation include 17 unit cells.

9b confirms this behavior. As one can see, three band gaps
are formed in the case of higher-order modulation within the
frequency range of interest (red in Fig. 9b). On the contrary,
only two band gaps are seen for the first-order modulation
(blue in Fig. 9b). The additional band gap for the higher-
order modulation is due to the introduction of Lm2 cos 2ωmt.
Note that the inclusion of higher-order harmonics will in-
troduce more transmittance dips between the major veerings
Vq ∩ wq.

4. Conclusion

In this work, We first revisit the concept of the one-
dimensional hybrid phononic crystal with uniform circuit
networks. To improve the wave mitigation functionality, we
then provide both theoretical and experimental investigation
of the dynamic phononic crystal integrated with spatially
and temporally modulated circuit networks. The considered
modulation gives rise to addition interactions between me-
chanical and electrical modes within the frequency range of
interest. This effectively extents the interaction regions and
broadens the applicable frequency range for flexural wave
mitigation. In addition, the realization of both modulations is
based on the convenient tuning of a circuit component, which
is favorable for practical applications. Given the complete-
ness of this study, we believe the dynamical phononic crystal
can pave the way for the next-generation applications such as
tunable multi-band filters.
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吴谦,钱泓桦,陈洋洋,黄国良
摘要 宽频弹性波衰减技术在现代工程应用中有不可或缺的地位. 本文提出了一种基于时间/空间调制电网和压电材料的动态声子

晶体并进行了实验验证. 该动态声子晶体可以在多频带上实现对弯曲波传输的衰减,并对衰减频带进行调控.压电分流电路为机械模

态和电模态提供了能量交换的同时也产生了布拉格带隙.该动态声子晶体仅需对电网进行时间/空间调制以实现可调制的宽频带弯曲

波衰减. 其中,通过对电网进行空间调制可实现两条布拉格带隙从而扩大了机电耦合以及弯曲波衰减的频率范围.另一方面,时间调制

使机电耦合的模态频率产生线性平移从而生成了多条时间-布拉格带隙.更重要的是,本文提供了一种简易的弯曲波带隙调谐方式,即

只对单一电阻进行控制.相关实验也进一步验证了时间/空间调制对弯曲波传输的影响.该动态声子晶体可以为下一代可调谐的多频带

滤波器等设备提供新思路.
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