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Solids built out of active components have exhibited odd elastic stiffness tensors whose
active moduli appear in the antisymmetric part and which give rise to non-Hermitian
static and dynamic phenomena. Here, we present a class of active metamaterial
featured with an odd mass density tensor whose asymmetric part arises from active
and nonconservative forces. The odd mass density is realized using metamaterials with
inner resonators connected by asymmetric and programmable feed-forward control
on acceleration and active forces along the two perpendicular directions. The active
forces produce unbalanced off-diagonal mass density coupling terms, leading to non-
Hermiticity. The oddmass is then experimentally validated through a one-dimensional
nonsymmetric wave coupling where propagating transverse waves are coupled with
longitudinal ones whereas the reverse is forbidden.We reveal that the two-dimensional
active metamaterials with the odd mass can perform in either energy-unbroken or
energy-broken phases separated by exceptional points along principal directions of
the mass density. The odd mass density contributes to the wave anisotropy in the
energy-unbroken phase and directional wave energy gain in the energy-broken phase.
We also numerically illustrate and experimentally demonstrate the two-dimensional
wave propagation phenomena that arise from the odd mass in active solids. Finally,
the existence of non-Hermitian skin effect is discussed in which boundaries host an
extensive number of localized modes. It is our hope that the emergent concept of the
odd mass can open up a new research platform for mechanical non-Hermitian system
and pave the ways for developing next-generation wave steering devices.

odd mass density | elastic metamaterial | non-Hermitian mechanical system | energy phase transition |
non-Hermitian skin effect

Mechanical metamaterials have gained extensive attention in the last two decades due
to their ability to exhibit material properties that are challenging to obtain in nature
(1–5). Intensive research has been conducted in order to determine the basic physics
behind these materials and their possible engineering applications. For example, various
engineered materials with negative effective mass density and/or negative modulus
were demonstrated for wave attenuation, noise reduction, wave focusing, and cloaking,
where the mass density and stiffness tensors are essentially symmetric because of the
system Hermiticity (6–20). Recent breakthroughs in active topological dynamics in
the context of topological pumping and nonreciprocal wave propagation have motivated
the search for topology-based wave functionalities by introducing active components into
mechanical metamaterials, which are baptized as non-Hermitian systems (21–26).

The non-Hermitian mechanical systems made of active components for energetic
interactions with the environment have opened perspectives for active material design.
Significant efforts have been made in expanding conventional continuum mechanics
to accommodate systems exhibiting odd elasticity with broken energy conservation
laws, where the stiffness tensor is asymmetric (27–29). A material displaying odd
elasticity must violate Maxwell–Betti reciprocity. This intriguing feature has recently
been experimentally demonstrated by introducing piezoelectric elements and motors
controlled by electrical circuits into host media (30–32). Additionally, these non-
Hermitian systems with odd elasticity exhibit non-Hermitian skin effect in both one
and two dimensions (1D and 2D). Recently, they were designed to perform basic
robotic manipulations such as steering motion and forces (33). However, all the odd
metamaterials and related nonconventional wave control are concentrated on odd
elasticity and their related topological wave propagation.

Here, we report, design, and examine the non-Hermitian wave phenomena that arise
from an active solid with odd mass density, where the mass density tensor appears to be
asymmetric. An elastic metamaterial with inner resonators is equipped with piezoelectric
elements mounted on supporting beams and controlled by electrical circuits to break
reciprocity between the local acceleration and active forces along the two perpendicular
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directions. Our approach enables nonsymmetric coupling be-
tween longitudinal and transverse motions in continuum solids.
The odd mass density simultaneously breaks parity and Maxwell–
Betti reciprocity. The active solid can perform energy phase
transition between energy-unbroken and energy-broken phases
separated by exceptional points, in analogy to the non-Hermitian
parity-time-reversal (PT) symmetric systems with balanced gain
and loss (34–36). We experimentally evidence 1D nonsymmetric
wave coupling where only transverse waves can be coupled
into longitudinal ones but not vice versa. 2D directional wave
amplification associated with the energy phase transition is
experimentally observed as well. Additionally, mechanical wave
amplification and related non-Hermitian skin effect are also
numerically demonstrated in 2D active solids. Our work paves
an alternative way to realize a class of active solids and provides
design guidelines for odd-density behaviors in active solids.

Odd Mass Density Tensors for Active Metamaterials. The 2D
mechanical metamaterial with inner resonators periodically
distributed in the matrix has been intensively investigated in the
past decades for generating subwavelength bandgaps and their
unconventional wave control abilities in elastic solids (37, 38),
as shown in Fig. 1A. To understand the working mechanism,
effective mass density properties of the metamaterial can be
formulated by considering a mass-in-mass unit. For the passive
2D metamaterial (Fig. 1B), the equations of motions of the inner
and outer masses can be easily obtained as

Fi +
(
u′i − ui

)
ki = Müi, [1](

ui − u′i
)
ki = mü′i, [2]

whereFi is the external force applied on the outer massM = a2ρ2

in xi, ui and u′i are the displacements of the outer and inner masses
along the xi direction, respectively. Substituting Eq. 2 into Eq.
1 subjected to harmonic forces, we readily obtain

Fi = −a2ρ̂ijω
2uj, [3]

where

ρ̂ij =
[
ρ̂11 (ω) 0

0 ρ̂22 (ω)

]
, [4]

is the effective mass density tensor of the metamaterial with
ρ̂11 (ω) = M

a2 + k1m
a2(k1−ω2m)

and ρ̂22 (ω) = M
a2 + k2m

a2(k2−ω2m)
.

As noticed, for passive designs, the effective mass density tensor,
ρ̂ij, is always symmetric, i.e., ρ̂12 = ρ̂21, and the components,
ρ̂11 and ρ̂22, can be positive or negative values depending on
the operation frequency ω. For the unit with symmetric mass
density tensor, the total work done by the external force is equal
to the change of kinetic energy of the mass, which means that
the mass itself neither injects nor dissipates kinetic energy. The
passive metamaterial is then a classical Hermitian system.

Consider now an active unit by installing a stretch sensor to
k2 and a force actuator on top of k1 (Fig. 1C ). The sensed stretch
u′2− u2 is fed to the actuator using an active bond ka. The active
force generated by the active bond and applied on the outer mass
along the x1 direction can be written as Fa = (u′2 − u2)ka. Note
that ka is not necessary to be a real number. Instead, it can be a
complex number leading to phase difference between the stretch
and the force Fa for harmonic motions. As a matter of fact, the
active bond builds a new relationship between the stretch and the
perpendicular force, which is absent in passive units. In addition,
the active bond is nonlocal, given that the stretch and the force
are not at the same location. As a result, the active bond induces
no feedback stretch in k2 for infinitesimal deformations. The
effect of the active bond is hence feed-forward. By adding the
active bond into equations of motion given in Eqs. 1 and 2, the
effective mass density tensor of the active unit can be obtained as

ρ̂ij =
[
ρ̂11 (ω) ρ̂12 (ω)

0 ρ̂22 (ω)

]
, [5]

where the off-diagonal term

ρ̂12 = −
kaω2m2

a2(k1 − ω2m)(k2 − ω2m)
, [6]

characterizes the relationship between the acceleration and the
external force perpendicular to the acceleration. It can be
easily seen that ρ̂12 is linearly controlled by the active bond
ka and regulated by the two resonance modes along the two
perpendicular directions, as both the sensing and actuation are
resonance dependent.

Interestingly, the effective mass density tensor of the active
unit is asymmetric, ρ̂12 6= ρ̂21. In the design, the acceleration

k2
k1k2

k1

A CB D

Passive bonds Active bonds

ka Stretch
sensorx1

x2

Δ =
2

Δ =
4

Δ = 0,

̇1

̇2

Fig. 1. (A) 2D elastic metamaterial enabled by inner resonators with a lattice size a. (B) Passive unit cell that carries conventional mass supports symmetric
force–acceleration relationship: the accelerations align always with the resulting forces. In the unit cell, the inner (black) and outer (blue frame) masses are
denoted as m and M, respectively. The Hookean bonds have spring constants k1 and k2 in the x1 and x2 directions. (C) Active unit cell that carries odd mass
comes with asymmetric force–acceleration relationship: Orthogonal accelerations generate nonorthogonal forces, and the process is asymmetric. In addition
to the Hookean k1 and k2, the unit cell conceptually consists of a stretch strain sensor which measures u′2 − u2 in x2 and an active Hookean bond which
generates an active force Fa = (u′2 − u2)ka in x1. (D) Kinetic energy cycle of the odd mass with �̂12 ∈ R and being positive. The particle indicates the velocity
trajectory for each selected value of 1� = �1 − �2 from 0 to 2�/! (Eq. 8). Clockwise and counterclockwise trajectories of the particle encircle nonzero area on
the map, indicate nonzero work done, and correspond to kinetic energy generated and lost, respectively.
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along the x1 direction does not induce an external force along
the x2 direction because no sensors along the x1 direction and no
actuators along the x2 direction are placed, and the feedback from
the active bond is absent. Consequently, ρ̂21 = 0. It is useful to
split ρ̂ij into two tensors: a symmetric (even) mass density tensor,
ρ̂eij, and an antisymmetric (odd) mass density tensor, ρ̂oij,

ρ̂ij =ρ̂eij + ρ̂oij =
[
ρ̂11 ρ̂e12
ρ̂e21 ρ̂22

]
+
[

0 ρ̂o12
−ρ̂o12 0

]
, [7]

where ρ̂e12 = ρ̂o12 = ρ̂12/2. The even part of the mass density
tensor, ρ̂e12, modulates anisotropy of the effective mass density
tensor in the active metamaterial. This can be understood by
finding principal effective mass densities of ρ̂eij along principal
directions through rotational coordinate transformations. Thus,
ρ̂e12 is a parameter contributing to mass anisotropy of the active
metamaterial.

The odd part of the mass density tensor, ρ̂o12, demands a force
always perpendicular to the acceleration. This is a direct conse-
quence of the active bond that, under some conditions, can inject
or dissipate energy into or from the active metamaterial. To see
this characteristics, we assume ρ̂o12 ∈ R, u̇1 = v̄1sin (ωt + φ1),
and u̇2 = v̄2sin (ωt + φ2). The work done by the external force
in one cycle of oscillations reads

WF =
∫ 2π/ω

0
F o
i · u̇idt =

∫ 2π/ω

0
a2ρ̂oijüiu̇jdt

=− 2πa2ρ̂o12v̄1v̄2 sin(φ1 − φ2). [8]

On the other hand, the induced kinetic energy due to ρ̂oij is always
zero sinceWE = 1

2a
2ρ̂oiju̇iu̇j = 0. If the internal dissipation of the

active metamaterial is not considered, the condition WF +WI =
0 should be imposed for the balance of energy between work
done by the external electric system and the total internal energy
gain or loss of the metamaterial in one excitation cycle, where
WI is the total internal energy gain or loss caused by the active
bond. In particular, when u̇1 and u̇2 are in-phase or out-of-phase,
WF = WI = 0 and the active bond is in a silence mode without
energy exchange. The effect of the active bond is only seen in the
symmetric part of the mass, ρ̂eij. Other than these two specific
cases, the active bond will do positive or negative work. When
WF > 0, the active bond will absorb energy from the active
metamaterial. On the other hand, when WF < 0, the active
bond will pump energy into the active metamaterial. The total
energy absorbed or pumped is proportional to ρ̂o12v̄1v̄2 and in

a sine relationship with the phase difference 1φ = φ1 − φ2
between u̇1 and u̇2 (Fig. 1D). In addition, the phases φi and φj
can be viewed as the phase of the excitation active force F o

i and
that of the velocity response u̇j, respectively. So, the odd mass
system behaves like a damped or undamped system depending
on 1φ. Note that the energy transfer happens under specific
conditions, such that phase transitions and exceptional points
are foreseen. In this sense, the active metamaterial now becomes
a classical Non-Hermitian system with energy loss and gain.

Physical Realization. To realize odd mass density tensors, we
propose a design of an active elastic metamaterial with inner
resonators by cutting slots from a single-phase plate to form
horizontal and vertical beams, which connect the central block
and its outer surrounding matrix (see the gray region in Fig. 2A).
The central block functions as the inner mass m, and the beams
serve as the springs k1 and k2 along the x1 and x2 directions. k1
and k2 can be controlled by the thickness and length of those
beams. Two piezoelectric patches are bonded on the horizontal
beams as stretch sensors, and the sensing signal is fed into
a transfer function H that sends to two piezoelectric patches
bonded on the vertical beams as actuators (Fig. 2A). When the
central block moves vertically, one of the sensing piezoelectric
patches is under tension (or compression), and the other is under
compression (or tension) (Fig. 2B). The total sensing signal
is then obtained from the two opposite charges Qs from the
sensing patches. The transfer function H(ω) processes the sensing
voltage and sends output signals Va to the two actuating patches,
with Va = HQs/C0, where C0 is the reference capacitance.
The two actuating patches with opposite polarizations bend the
two vertical beams to produce horizontal forces applied on the
central block and the surrounding material, Fa ∝ Va (Fig. 2C ).
However, when the central block moves horizontally, all the
vertical beams are bent and horizontal beams remain nearly
straight, as horizontal beams are much stiffer than the vertical
ones in response to horizontal motions. As a result, the two
sensing patches do not sense the motion and the electronic
loop will not produce any output voltages. Therefore, the
electromechanical control loop is entirely feed-forward: Vertical
motion induces horizontal forces, while horizontal motion does
not induce vertical forces.

The design is validated first by performing numerical simula-
tions to calculate the effective mass density tensor of the active
metamaterial using COMSOL Multiphysics (Fig. 2D). In the
simulations, we prescribe an acceleration, āi, on the boundaries of
the unit cell and calculate the total reactor forces, F̄i. The effective
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Fig. 2. Active unit cell design for odd mass density. (A) The metamaterial unit cell, which exhibits odd mass, consists of a structured steel frame and four
piezoelectric patches (PZT-5A) with two of them being stretch sensors and the other being actuators. The asymmetric actuation is achieved by a programmable
controller which connects the sensors (dark red) and actuators (light red) and is characterized by a transfer function H. The inner and outer masses, m and
M, are indicated. The vertical (blue dashed) and horizontal (yellow dashed) beams serve as the springs with stiffnesses k1 and k2 shown in Fig. 1, respectively.
(B and C) The schematic illustration of deformation distribution reveals how the two orthogonal motions are coupled in a nonsymmetric way: The sensors sense
the vertical deformation and feed the sensing voltage processed by the controller to the actuators for horizontal actuation. However, the reverse is forbidden
owing to the absence of a horizontal sensor. (D) Numerically obtained effective mass density tensor �̂ij , normalized with �̂0 = �̂11(! = 0.3!r1). The frequency
is normalized with the first resonance frequency !r1 = 2� × 10.81 kHz.
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mass density tensor is attained based on Eq. 3; SI Appendix. In
the design, H = 1, C0 = 2 nF, and the lengths of horizontal
and vertical beams facing the central block are different, leading
to different resonance frequencies of the horizontal and vertical
modes. As shown in Fig. 2D, the resonance behavior of ρ̂11
and ρ̂22 agrees well with that predicted by Eq. 4. Further, ρ̂12
is nonzero and displays a double resonance behavior and ρ̂21
indeed vanishes. Therefore, the effective mass density tensor is
asymmetric. The design can be employed in further experimental
and numerical studies to exploit other profound properties of the
odd mass density.

Experiments. We fabricate a unit of the active metamaterial on a
steel beam to test its wave transmission properties (Fig. 3A). We
also leverage it as a way to show the existence of asymmetric/odd
mass density tensors. Details about the fabrication and circuit
design as well as implementation can be found in Materials
and Methods and SI Appendix. In the study, we focus on
two fundamental modes supported by the beam structures:
longitudinal modes dominated by the velocity component u̇1

+

A

B C

T T L

AFGAmplifier

SLDV
DAQ & Signal 
processing

PZT
transducers

Response

Trigger

Excitation

D E

L1 T L
+

12

2 12

̇ 2 1

̇ 2 1

Odd off

(ms) (ms)

(ms) (ms)

T incidence

Odd on 

L incidence

Fig. 3. Experimental demonstration of 1D nonsymmetric wave coupling
enabled by odd mass. (A) Schematic of the experimental test bed that
includes an active metamaterial with odd mass on a steel host beam.
Transverse (T) incidence generates both transverse (T) and longitudinal (L)
transmission, whereas the reverse is forbidden. The green arrows define the
wave polarization u1 and u2. The inset displays a photo of the metamaterial
functional unit. In the experiment, the incidence from the left is excited by
two symmetrically placed piezoelectric patches (PZT-5A) connected to an
voltage amplifier and arbitrary function generator (AFG); SI Appendix. The
measurement and postprocessing are implemented by a commercial laser
vibrometer system (Polytec PSV-400 3D). (B and C) Measured normalized
transient velocities (B) u̇2 and (C) u̇1 at the output under a transverse incidence
when the active control is OFF (red solid) and ON (blue dashed). (D and E)
Numerical normalized transient velocities (D) u̇2 and (E) u̇1 at the output
under a longitudinal incidence when the active control is OFF (red solid)
and ON (blue dashed). The excitation in both cases is a 15-cycle tone burst
centered at 11.3 kHz. The displayed curves are obtained after taking averages
on the measured data. The velocities are normalized with the maximums of
their own incidence (green).

and transverse modes dominated by the velocity component
u̇2. When the beam is symmetric about the neutral axis, the
two modes are decoupled. Introducing geometric asymmetry can
make the two modes coupled, and the wave mode conversion
has been observed in various passive designs (15, 39). However,
wave mode interactions demonstrated so far have always been
reciprocal, namely longitudinal modes can be converted into
transverse modes either partially or totally; transverse modes
can also be converted back into longitudinal modes in a similar
manner.

The wave mode conversion embraced by the odd mass can no
longer be reciprocal. To illustrate this behavior, sensing patches
are aligned along the x1 direction and actuating patches along
the x2 direction (Fig. 3A). Since only transverse motions can be
sensed in this case, which in turn generates longitudinal forces
thanks to the active bond, transverse waves induce longitudinal
waves when passing through the active metamaterial. The wave
signals of u̇2 and u̇1 shown in Fig. 3 B and C demonstrate this
behavior, where transmitted waves from the active metamaterial
have both u1 and u2 components when the control is ON. The
u2 responses with and without the control remain alike, due to
the fact that the extraction of the sensed charge in the presence
of control does not cause any transverse scattering other than
those caused by the structures of sensors and actuators. The
active actuation by the control loop and the actuators is always
antisymmetric with respect to the transverse motion. In other
words, the actuation mainly affects the longitudinal component
and only has a very minor influence on the transverse component
due to the Poisson’s ratio. The experimental results yield
satisfactory agreement with numerical simulations (SI Appendix
and Movies S1–S4). On the other hand, no transverse wave
components can be observed from a longitudinal incidence, as
shown in Fig. 3 D and E . Similarly, if one rotates the active
metamaterial by 90◦, longitudinal waves induce transverse waves,
but not the reverse; SI Appendix. Further, the transmitted and
reflected signals measured from experiments can be employed
to retrieve the effective mass tensors of the active metamaterial,
where we can assume the unit embedded in the beam as a point
scatterer.

Wave Propagation in 2D Elastic Medium with Odd Mass Density
Tensors. To further explore the nonstandard dynamics supported
by odd mass density tensors, we study wave propagation in a
2D active metamaterial. Note that in the subsequent examples,
we consider the cases of ρ̂o12 ∈ R. To facilitate the analysis, it
is useful to rewrite the asymmetric mass density tensor along
principal directions of the symmetric mass density tensor. The
transformed mass density tensor reads (Materials and Methods)

ρ̃ij =
[
ρ̃11 ρ̃12
−ρ̃12 ρ̃22

]
, [9]

where ρ̃ij = ρ̂kl β̃kiβ̃lj, and β̃ki is the rotation matrix from xi to
x̃i with x̃i being the principal axis of ρ̂eij. At continuum limit,
equilibrium equations can be written in x̃i as

(λ+ µ) ũj,ji + µũi,jj = −ω2ρ̃ijũj, [10]

where ũi, λ, and µ denote the transformed displacement, first,
and second Lamé’s constants, respectively. We assume harmonic
wave solutions ũα = Ũαei(q̃β x̃β−ωt) for Eq. 10, where q̃β = qr̃β .
q and r̃β are the wavenumber and direction cosine cos θ̃β where θ̃β

4 of 11 https://doi.org/10.1073/pnas.2209829120 pnas.org
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is the angle between the principal directional and xβ . Dispersion
relations indicated by Eq. 10 then read

q2 = ω2
I1 ±

√
I2
1 − 4I2

(
ρ̃11ρ̃22 + ρ̃2

12
)

2I2
, [11]

where I1 = D22ρ̃11 + D11ρ̃22, I2 = D11D22 − D2
12, and

D11 = (λ+ 2µ) r2
1 + µr2

2 , D22 = (λ+ 2µ) r2
2 + µr2

1 , D12 =
(λ+ µ) r1r2. r1 = arccos θ1 and r2 = arccos θ2 are the direction
cosines with respect to x̃1 and x̃2 after the transformation.
Clearly, given a realω, there always exist two independent modes,
characterized by the two solutions of q2. Note that the odd mass
density of the active metamaterial, ρ̂12, is involved in three terms
in Eq. 11, ρ̃11 and ρ̃22 as well as ρ̃12 to collectively control wave
propagation along different directions.

The most striking characteristics of Eq. 11 is the emergence of
the term ρ̃2

12 related to q2, and q2 need not be always greater than
zero. For example, when I2

1 < 4I2
(
ρ̃11ρ̃22 + ρ̃2

12
)
, q becomes a

complex number, indicating energy gain or loss when waves travel
along certain directions. The fact of q evolution from originally
a real number to a complex number underpins a phase transition
governed by the odd mass density. To see the phase transition
in more detail, we consider wave propagation along one of the
principal directions, in which the effective mass density is smallest
(Materials and Methods). For simplicity, we assume ρ̂11 = ρ̂22,
β̂ = ρ̂12/ρ̂11, and x̃i is obtained by rotating xi by π/4. Fig. 4
A and B show the real and imaginary parts of the two q with
different odd mass densities. Fig. 4 C and D show the real and
imaginary parts of the corresponding eigenvectors (polarization
states of quasipressure and quasishear modes). For zero or small
β̂ leading to I2

1 > 4I2
(
ρ̃11ρ̃22 + ρ̃2

12
)
, there exists two different

real q, and the corresponding eigenvectors are both real. ρ̂12 only
induces anisotropy, which, however, is different from passive
anisotropic mass densities, where eigenvectors of different modes
are orthogonal. For the active metamaterials presented here,
the presence of ρ̃12 makes eigenvectors of different modes no
longer orthogonal. Since the system in this phase region is energy
conserved, we say that this phase is an energy-unbroken phase.

A B

C D

Fig. 4. Energy phase transition at �1 = 0 by tuning �̂. (A) Real and (B)
imaginary parts of wave numbers q in function of �̂. The EP is indicated,
together with the energy-unbroken and energy-broken phases. (C) Real and
(D) imaginary parts of Ũ2/Ũ1 of eigenvectors in function of �̂. In all figures, we
select � = 37.4 GPa, � = 27 GPa, and �̂11 = �̂22 = 16277 kg/m3.

Further, by increasing β̂ such that I2
1 = 4I2

(
ρ̃11ρ̃22 + ρ̃2

12
)
,

the two q and their associated eigenvectors coalesce, forming
an exceptional point (EP). Further increasing β̂ to make I2

1 <

4I2
(
ρ̃11ρ̃22 + ρ̃2

12
)
, the two q appear in a complex conjugate

pair, and wave propagation accompanied with energy gain (blue
mode) and loss (red mode) can be anticipated in this phase region.
Thus, we say this phase is an energy-broken phase. In addition
to the complex q, the eigenvectors are also complex, coinciding
with the work done condition designated by Eq. 8.

Next, we examine the phase transition along different direc-
tions. Fig. 5A shows the isofrequency curves for the real part of the
wavenumbers, <(q), with different odd mass densities. Fig. 5B
shows the imaginary part of the wavenumbers, =(q), along
different directions θ . Note that θ represents the direction angle
with respect to x1 before transformation. In the figures, we select
β̂ = 0, 0.4, 0.5865, and 0.7. When β̂ = 0, the active metamaterial
is reduced to a passive one with isotropic mass densities, where
waves travel equally to different directions. In Fig. 5A, blue
dashed and red solid curves represent pressure and shear wave
modes, respectively. When β̂ = 0.4, no gain and loss can be found
along any directions, the active metamaterial is in the energy-
unbroken phase. Due to anisotropy, waves propagate at different
phase velocities along different directions. In particular, along
the principal directions of π/4, quasipressure waves travel at the
higher phase velocities, while quasishear waves travel at the lower
phase velocities. Similar conclusions can be attained along the
directions of 3π/4, where the principal mass density along this
principal direction is largest. When β̂ = 0.5865, two exceptional
points are formed along the principal direction with the smallest
principal mass density, namely the directions of π/4 and 5π/4.
Further increasing β̂ to 0.7, the active metamaterial enters the
energy-broken phase around these directions. As expected, =(q)
becomes nonzero, and waves are attenuated and amplified along
those directions. In addition, four exceptional points are formed
at the boundaries of those directions. Note also that, for all the
cases, the wave behavior obeys mirror symmetry with respect to
the principal axes of the even mass density tensor. This is the
direct consequence of the q2 term in Eq. 11. The conclusion
that the exceptional points (wave attenuation and amplification)
are first observed along the principal direction with the smallest
principal mass density still holds when ρ̂11 6= ρ̂22. The launch
pattern of the exceptional points in the active solid provides a
tool to tailor the wave amplification direction using ρ̂11 and
ρ̂22 through designing passive metamaterial structures and a
numerical demonstration will be given in the following.

To further examine the energy phase transition and directional
wave amplification, harmonic wave propagation in a 2D active
medium is conducted by applying cylindrical wave excitation
via a point source in COMSOL Multiphysics, as shown in
Fig. 6. For simplicity, the active unit is assumed to be the one
given in Fig. 2A but preserves C4 structure symmetry to ensure
ρ̂11 = ρ̂22 (SI Appendix). The effective odd mass density tensor
is determined using Eq. 3, and the effective stiffness tensor is
determined numerically by applying macroscopic strain fields
(40, 41); see SI Appendix, andMaterials andMethods. To suppress
reflected waves from the finite boundaries, the active solid is
embedded in a homogenized medium with almost the same
effective stiffness tensor attached to the perfectly matched layers
(PMLs). From Fig. 6 A and B showing both the divergence
and curl of the displacement fields, it can be concluded that
the active solid can operate from the energy-unbroken phase
to the energy-broken phase through the exceptional points by
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A C

B

Fig. 5. Energy phase transition. (A) Isofrequency contours<(q̄1) and<(q̄2) for both propagating modes when the system operates in energy-unbroken phases
(isotropic with �̂ = 0 and anisotropic with �̂ = 0.4), at exceptional point (�̂ = 0.5865), and in energy-broken phase (�̂ = 0.7). q̄ is the wavenumber normalized
with the maximum in each case. Principal directions x̃1 and x̃2 are illustrated by rotating x1 and x2 by �̃1. Here, �̃1 = �/4 (B) � dependence of the imaginary
components of wave numbers, =(q̄1) and =(q̄2), for both modes correspondingly in the four representative phases mentioned in (A). In both (A) and (B), the
blue and red modes correspond to those given in Fig. 4. (C) The energy phase diagram in the space of � in black (azimuthal) and �̂ in red (radial). The yellow
region is the energy-unbroken phase and supports free wave propagation. While the dark blue regions are energy-broken phase where wave amplification
occurs.

increasing or decreasing β̂ from β̂ = 0 (energy conservation).
The wave propagation behavior becomes more anisotropic with
the increase or decrease of the β̂ in the energy-unbroken phase.
It also indicates strong directional wave amplification when
β̂ = 1.18 at which the system operates in the energy-unbroken
phase. The directions of the wave amplification indeed coincide
with the principal directions of the mass density tensors, which
are θ1 = π

4 /
3π
4 and 5π

4 /
7π
4 for β̂ = 1.18/ − 1.18. Note that

minor unexpected scattering at the corners is found in the curl
fields for the energy-unbroken phase (Fig. 6B). This is due to
the unit cell size being comparable to the operating wavelength,
thereby weakening the long-wavelength assumption to some
extent. To validate the simulation and related wave phenomena,

comparison of the wave field distributions obtained from both
effective medium and real structures at all β̂ is conducted in
SI Appendix, and very good agreement is observed. It is also
interesting to point out that the wave amplification along the
principal directions still holds when the transfer function is a
purely imaginary number, say H = i, equivalent to β̂ = 1.18i
(SI Appendix). In comparison with the cases of real β̂, here, the
wave amplification direction for one of the two modes shifts to the
other principal direction byπ/2. It should also be mentioned that
the active solid with purely imaginary β̂ always operates in the
energy-broken phase without energy phase transition behavior. It
should be noted that since the modulus of the active metamaterial
with odd mass density is isotropic in the continuum limit, the

A

B

Fig. 6. Numerical demonstration of energy phase transition and directional wave amplification. (A) Numerically evaluated divergence fields of displacement
at 16 kHz for various �̂ under a pressure loading. (B) Numerically evaluated curl fields of displacement at 16 kHz for various �̂ under a shear loading. In both
figures, �̂ = 0 (energy-unbroken isotropic), �̂ = ±0.29 (energy-unbroken anisotropic), and �̂ = ±1.18 (energy-broken) are achieved with the transfer functions
H = 0, H = ±0.2, and H = ±1, respectively. The 2D odd mass region, composed of 12 × 12 unit cell and possessing odd mass density (Materials and Methods
and SI Appendix), is embedded in a normal isotropic background (� = 16277 kg/m3, � = 27.4 GPa, � = 37 GPa) surrounded with perfect matched layers (PMLs).
The point sources for the pressure and shear excitation are realized by setting normal and tangential boundary loads, respectively. The fields obtained from
simulations are all normalized with their own maximums. The principal direction x1 is indicated.
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2D stiffness tensor should have the same form as the 1D system
when θ̂ = 0 or π/2. Consequently, 2D wave behaviors along
the x1- or x2-directions will resemble those in 1D systems, i.e.,
nonsymmetric wave coupling (Fig. 3), when a pressure or shear
source loading is excited only along the x1- or x2-directions.

To experimentally demonstrate the 2D directional wave
amplification caused by odd mass density, we fabricated an active
metamaterial consisting of 2 × 2 unit cells in a stainless-steel
plate (Materials and Methods and SI Appendix). The odd mass
density is physically realized with the help of connected analog
circuits (SI Appendix). The experimental setup of measuring wave
propagation is shown in Fig. 7A and detailed in Materials and
Methods. Two piezoelectric patches at the center of the meta-
material region are symmetrically bonded on the two surfaces
of the plate as actuators to generate cylindrical pressure waves.
Then, we select two scanning regions (291.2 × 291.2 mm2),
located symmetrically with respect to the active metamaterial,
to demonstrate the directional wave amplification. The time-
dependent velocity fields in both x1- and x2-directions are
measured when the external circuits are switched on and off
to activate and deactivate the odd mass density. The divergence
fields derived from the measured wave fields are displayed in Fig.
7 B and C without and with the active control, respectively.
As shown in Fig. 7B, when the control is switched off, the
metamaterial is purely passive and does not exhibit odd mass
density. It is evidenced that the measured wave fields in the two
regions are almost symmetric, representing the isotropic scenario
(β̂ = 0) depicted in Fig. 6. When the control is activated
(Fig. 7C ), the appearance of odd mass density results in the
amplification of pressure waves propagating within the region
I. In contrast, the measured field in the region II resembles
that in the passive scenario, and no obvious wave amplification
can be observed (Movies S1–S4). To demonstrate this behavior
quantitatively, the magnitude of the measured divergence field
on a predefined curve is plotted in Fig. 7D for both active

and passive scenarios. The difference in magnitude between two
configurations clearly evidences the 2D directional amplification
for pressure waves around 5π/4, corresponding to the local
direction around2 ≈ π/4 in Fig. 7D. It should be noticed that
the directional wave amplification can be enhanced by increasing
the number of active unit cells; SI Appendix. Furthermore, the
corresponding 2D harmonic simulation under the plane-stress
assumption qualitatively verifies the transient experiments (Fig.
7E). The small discrepancy from the experiments is due to the use
of a perfect circular source in the numerical simulation, instead
of the real piezoelectric actuator. Additionally, SI Appendix
presents the numerical comparison between the real structure and
the corresponding effective homogeneous medium. Satisfactory
agreement can be observed, indicating that the 2 × 2 active
array can be effectively treated as a homogeneous metamaterial
possessing odd mass density.

Anisotropic mass densities, namely ρ̂11 6= ρ̂22, provide
another degree of freedom in tuning directions of the wave
amplification in the active solid. Due to the anisotropy, the
principal directions of the mass density differ from those of the
isotropic mass density with different phase velocities. In this way,
the wave amplification directions can be adjusted accordingly.
To illustrate this wave phenomenon, the normalized divergence
and curl fields of wave displacement are plotted in Fig. 8 for the
effective active media with ρ̂22/ρ̂11 = 0.1 and 2, and β̂ fixed at
0.6144. The angle change of directional wave amplification for
both pressure and shear waves confirms the functionality of the
mass density anisotropy. The predicted angles of directional wave
amplification are indeed mainly along the principal directions
of the mass density from the analytical analysis (Materials and
Methods). Some discrepancies are observed, which may attribute
to the material impedance mismatch between the real active
solid and its surrounding background. In addition, the complete
angle θ̃1 tunability of directional wave amplification due to
the mass density anisotropy is systematically investigated when

Fig. 7. Experimental demonstration of 2D directional wave amplification. (A) Experimental setup for the demonstration of the 2D directional pressure wave
amplification induced by odd mass density at 14 kHz. The odd-mass region and the back view are displayed on the bottom. (B and C) Snapshots of the
divergence of the measured velocity fields within the scanning regions with (B) and without (C) the active control. Three representative time instants are
selected as T1 = 0.068 ms, T2 = 0.088 ms, and T3 = 0.126 ms. A predefined dashed curve for the evaluation of wave amplification is assigned, with 2 being the
local scan angle. (D) Dependence of field magnitude on the local angle2 for all the cases included in (B and C). Magnitudes are collected at T3 on the predefined
dashed curves and normalized with respect to the maximum in the case of Passive-I. (E) Numerically obtained divergence field magnitude distribution at 14
kHz. The simulation domain is surrounded by perfect matched layers. All the geometrical, material, and electrical parameters are identical to those used in the
experiments. The inset highlights the deformation pattern of the active unit cells upon cylindrical pressure loading.
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A B

C D

Fig. 8. Wave manipulation with anisotropic odd mass density tensor. (A and
B) Normalized divergence fields of displacement at (A) �̂22/�̂11 = 0.1 and
(B) �̂22/�̂11 = 2. (C and D) Normalized curl fields of displacement at (C)
�̂22/�̂11 = 0.1 and (D) �̂22/�̂11 = 2. �̂ = 0.6144 is assumed (energy-broken
phase). The background media are the same as the previous. The stiffness
property of the odd mass regions (500 mm ×500 mm) is consistent with that
of the background in order to improve impedance matching. In both field
plots, �̂11 is selected as 16,277 kg/m3. The field intensities are normalized
with their own maximums at 16 kHz. On the bottom of each field plot,
the theoretical principal direction �̃1, defining x1 and predicting maximum
amplification steering angle, is indicated in red.

ρ̂22/ρ̂11 takes values between 0.1 and 2, which is illustrated
in SI Appendix.

Non-Hermitian Skin Effect. As the active solid with odd mass
density is a non-Hermitian system, it is also interesting to find
how the non-Hermiticity would influence the nature of bulk
modes. To start with, we impose open boundary condition
(OBC) and periodic boundary condition (PBC) along x2
direction in the finite active solid and assume q1 = 1 rad/m in
reciprocal space along the x1 direction. The spectra for β̂ = 0.2
and β̂ = 0.9 are plotted in Fig. 9 A and B, respectively. We find
that the OBC and PBC spectra coincide in the energy-unbroken
region with β̂ = 0.2 but are drastically distinct from each other in
the energy-broken region with β̂ = 0.9. To retrace this spectral
discrepancy, the vertical wave number q2 should be extended
on the generalized Brillouin zone (GBZ), which is a loop on
the complex plane, SI Appendix for the derivation of the GBZ
(42). Fig. 9 C and D illustrate the eigenmodes under OBC for
β̂ = 0.2 and β̂ = 0.9, respectively. The active solids can only
host bulk modes when the system is in the energy-unbroken phase
(43, 44). However, we notice that some eigenmodes localize to the
open edges when the system is in an energy-broken phase, which
corresponds to an elastic manifestation of the non-Hermitian
skin effect (28, 45, 46). The complex frequency means that
the skin modes are amplified (attenuated) for positive (negative)
=(frequency). This skin mode is different from the Rayleigh wave
mode whose amplitude is invariant since the frequency is real in
classic elasticity. In addition, the skin modes always appear in
pairs with one localized on the Top while the other on the Bottom
since the eigenfrequencies always exhibit complex conjugate in
the energy-broken phase (SI Appendix).

A B

C D

Fig. 9. Non-Hermitian skin effect induced by odd density. (A and B) The
complex spectrum when the system operates at �̂ = 0.2 and 0.9. The squares
with the hue indicating the wavenumber q2 and gray circular scatters are
results from PBC and OBC, respectively. (C) Numerically computed OBC
eigenmodes at �̂ = 0.2 for a finite ribbon. The corresponding eigenfre-
quencies are 12.94, 15.48, and 30.30 kHz from Left to Right. (D) Numerically
computed eigenmodes at �̂ = 0.9. The corresponding eigenfrequencies are
27.71 + 0.324i, 27.71 − 0.324i, and 28.14 kHz from Left to Right. The Top and
Bottom are set with open boundary conditions. Without loss of generality, the
horizontal wave number is fixed at q1 = 1 rad/m.

Conclusion

In conclusion, the active metamaterial presented here demon-
strates odd mass density that is enabled by sensing, actuating,
and local computation. The minimal on-board electronics that
power the interior local resonators enable its non-Hermitian wave
functions including the directional wave amplification and the
non-Hermitian skin effect. Odd mass density extends the range of
possible couplings between conventional forces and deformation
along two perpendicular directions by including antisymmetry
in their relationship. Our design can be flexibly tuned through
computer coding and scaled via microelectromechanical systems
(MEMS). The mechanical approach relies on a feed-forward
control loop, a generic concept that can exist in both metamaterial
and biological contexts. It should be emphasized that the
active system also possesses a generalized PT symmetry to
admit the pseudo-Hermiticity (Materials and Methods), stating
[K, ρ̂−1

ij D] = 0, where K is an antiunitary complex conjugation
operator (28). Combining the principles illustrated here with odd
moduli, nonlinearities, and strong dissipation suggests different
approaches for the control of wave propagation in active solids
and fluids.

Materials and Methods

Sample Fabrication. The odd-mass metamaterial beam in the 1D experiments
is constructed by mounting four piezoelectric patches (APC PZT-5A, 5 × 0.55
×0.55 mm3) via conductive epoxy onto a laser-cut stainless steel host beam.
The two actuating piezoelectric patches are oppositely polarized such that the
two vertical beams are bent producing forces applied on the central block and
the surrounding material. In the 2D experiments, four odd-mass unit cells are
manufactured using a laser cutting technique in a stainless steel host plate
(1,700× 1,700×3 mm3). To suppress the reflection from plate boundaries,
the plate is wrapped with a layer of damping clay. Sixteen piezoelectric patches
(APC PZT5-A, 6×3×0.72 mm3) are mounted via a conductive epoxy (CW 2400)
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onto the cutting area to serve as sensors and actuators for the four unit cells. The
sensors and actuators are connected by a homemade analog circuit consisting
of charge amplifiers, low-pass filters, and voltage amplifiers (SI Appendix). The
circuit works as a transfer function for input and output signals, which reads

H(ω) =
H0

−ω2/ω2
c + 2iηω/ωc + 1

, [12]

where H0 = 30, ωc = 2π × 33.5 kHz and η = 0.4. Adopting this transfer
function enforces the system stability.

Experimental Protocols. In the 1D experiments, an odd mass metamaterial
unit cell is connected with external control circuits, see the schematics in Fig.
3 and SI Appendix. Two piezoelectric transducers are attached on the Top
and Bottom sides of the host beam to generate transverse incidence. The
transfer function used reads H(ω) = H0/(ω

2/ω2
0 + 2ξω/ω0 + 1), where

H0 = 2 × 108, ξ = 0.5 and ω0 = 2π × 15 kHz. We employ fifteen-
cycle tone-burst signals with a central frequency of 11.3 kHz. We generate and
amplify incident wave signals via an arbitrary waveform generator (Tektronix
AFG3022C) and a high-voltage amplifier (Krohn-Hite), respectively. In-plane
velocity wave fields for u and v are measured on the surface of the right side
of the metamaterial by a scanning laser Doppler vibrometer (Polytec PSV-400).
To suppress reflected waves at the boundaries of the host beam, we clamp the
edge and bond two layers of clay on the host beam with sufficient lengths. This
way, waves can propagate through the metamaterial with approximated infinite
boundary conditions in the background (47). The time-domain signals shown
in Fig. 3 are collected 120 mm away from the right boundary of the odd-mass
metamaterial. In the experimental measurement, a ten-cycle tone-burst voltage
signal V(t) = V0 sin (2π fc t) [1− cos (2π fc t/10)] with a central frequency
fc = 14 kHz and V0=500 V is employed on the central piezoelectric actuators
to generate cylindrical pressure waves. The excitation signal is first produced
by the arbitrary waveform generator (Tektronix AFG3022C) and then amplified
by a high-voltage amplifier (Trek Model 2205). Reflective tapes were used to
enhance the reflected signals of the laser beams from the sample. In-plane
velocity fields are measured using the 3D scanning laser Doppler vibrometer
(Polytec PSV-400 3D). Then, 33 × 33 scan points are assigned within the
291.2× 291.2 mm2 scanning area to obtain satisfactory resolutions. In order
to suppress background noise and improve the signal-to-noise ratio, a band-
pass filter covering 12 to 20 kHz is implemented during the postprocessing,
and the collected time-domain data are averaged ten times during the
measurement.

Finite Element Simulations. We use COMSOL Multiphysics to determine the
homogenized properties of the odd-mass unit cell and obtain the 2D field
distributions for both real structures and homogenized media. In all the
simulations, we model the piezoeletric patches via a 3D linear piezoelectric
constitutive law. The top and bottom piezoelectric patches act as sensors whose
signals are obtained by integrating the free charge over the top surfaces of the
sensors. Also, the top and bottom surfaces of the sensors have vanishing electric
potential. The bottom surfaces of the piezoelectric actuators are grounded, and
we apply electrical potentials, acting as actuating voltages, on their top surfaces.
The actuating voltages are determined based on the sensing voltages via the
electronic transfer function H. For the frequency-domain simulations in Fig. 3,
free boundary conditions are applied on the top and bottom boundaries of the
beam. Two perfect matched layers (PML) are placed on the left and right edges
of the beam in order to suppress reflected waves from the boundaries. The
incidence is generated by applying a harmonic force on the left of the odd-mass
metamaterial. To simulate the wave propagation given in Fig. 6, a metamaterial
composed of 12×12 odd mass unit cells is placed within a normal isotropic
medium. PMLs are then attached to surround the background ensuring the
suppression of reflected waves. The point source at the center is constructed
as a small circle. The cylindrical pressure and shear excitation are generated
by applying boundary-normal and boundary-tangential harmonic forces on the
small circle, respectively. In the simulations for homogenized models, we replace
the 12×12 metamaterial with a homogenized square with the same overall size.

The effective odd mass density tensor and the orthotropic elasticity tensor by
homogenization are entered using weak-form formulations.

Principal Direction of Odd Mass Density Tensor. Based upon Eq. 7, we can
seperate the odd mass density tensor into even and odd parts. The principal
mass density and directions can be found by solving eigenvalue problem for the
even part

ρ̂eij =

[
ρ̂11 ρ̂e12
ρ̂e21 ρ̂22

]
. [13]

The eigenvalues read

λ1,2 ≡ ρ̃11,22 =
ρ̂11 + ρ̂22 ±

√
(ρ̂11 − ρ̂22)

2 + 4ρ̂e12ρ̂
e
21

2
, [14]

with ρ̂e12 = ρ̂e21 = ρ̂12/2. The corresponding eigenvectors can be written as
a transformation matrix β̃ reading

β̃ =

[
cos θ̃1 − sin θ̃1
sin θ̃1 cos θ̃1

]
, [15]

where the principal orientation of the smallest mass density takes tan(2θ̃1) =
2ρ̂e12/(ρ̂22 − ρ̂11), since

(ρ̂22 − ρ̂11) cos θ̃1 sin θ̃1 = ρ̂e12(cos2 θ̃1 − sin2 θ̃1), [16]

must hold. While the odd part ρ̂oij given in Eq. 7 is invariant under the
transformation, namely

ρ̂oklβ̃kiβ̃lj = ρ̂oij =

[
0 ρ̂o12
−ρ̂o12 0

]
, [17]

with ρ̂o12 = ρ̂12/2. In this sense, the transformed mass density tensor reads

ρ̃ij = ρ̂klβ̃kiβ̃lj = ρ̂eklβ̃kiβ̃lj + ρ̂oij =

[
ρ̃11 ρ̂o12
−ρ̂o12 ρ̃22

]
, [18]

which represents Eq. 9.

Pseudo-Hermiticity. We clarify that the system with odd mass density is η-
pseudo-Hermitian and exhibits a generalized PT symmetry. Based on ref. (46),
a 2× 2 matrix Q with pseudo-Hermiticity can be written as

Q = εσ0 + (γ n1 + iξ sinαn2 + iξ cosαn3) · �, [19]

where σ0 is a 2× 2 identity matrix and� = (�x ,�y ,�z)T are Pauli matrices,
with

n1 = (sin0 cos8, sin0 sin8, cos0), [20]
n2 = (cos0 cos8, cos0 sin8,− sin0), [21]
n3 = (− sin8, cos8, 0). [22]

The pseudo-Hermitian matrix Q admits 6 real variables and is said to be
n1 · �-pseudo-Hermitian. Its eigenvalues read

λ1,2 = ε ±

√
γ 2 − ξ2. [23]

The spectrum ofQ is real whenγ 2
−ξ2 > 0. Then, it is always accompanied

with a positive definite operator η reading

η = p[γ σ0 + (on1 + γ cosαn2 − γ sinαn3) · �], [24]

and resulting in
ηQη−1 = Q†. [25]

Above, p and o are arbitrary real constants satisfying the conditions pγ > 0
and o2 < γ 2

− ξ2. In our case, we have
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Du = −ω2M̂u. [26]

The above is written as[
(λ+ 2µ)c2 + µs2 (λ+ µ)cs

(λ+ µ)cs (λ+ 2µ)s2 + µc2

]
u =

ω2

q2

[
ρ̂11 ρ̂12

0 ρ̂22

]
u,

[27]
in which c ≡ cos θ and s ≡ sin θ . Without loss of generality, we select
ρ̂11 = ρ̂22 = ρ̂c and ρ̂12 = β̂ρ̂c . By rearranging Eq. 27, we arrive at[

A− Bβ̂ B− Cβ̂
B C

]
u =

ρ̂cω
2

q2
u, [28]

where

A = (λ+ 2µ)c2 + µs2, [29]

B = (λ+ µ)cs, [30]

C = (λ+ 2µ)s2 + µc2. [31]

Comparing Eq. 28 with Eq. 19, one can easily find that our system can be
expressed by Eq. 19 with the substitutions

ε =
1
2
(A + C − β̂B), [32]

γ = −
1
2
β̂C, [33]

ρ cos0 =
1
2
(A− C − β̂B), [34]

ρ sin0 =
1
2
(2B− β̂C), [35]

8 = α = 0. [36]

Therefore, our odd-mass system admitsηθ -pseudo-Hermiticity, whereηθ =

n1(0) · �. The condition γ 2
− ρ2 > 0 for real spectrum ofω2 can be recast

as
β̂2B2

− 2B2(A + C)β̂ + 4B2 + (A− C)2 > 0. [37]

Therefore, the PT-unbroken regions, shown in Fig. 5, are determined by

β̂ >
2(A + C)

B
+

2

B2

√
B2AC − B4, [38]

β̂ <
2(A + C)

B
−

2

B2

√
B2AC − B4. [39]

By calculation, one can find that the PT-unbroken and PT-broken phase regions
coincide with the energy-unbroken and energy-broken regions, respectively.

Data, Materials, and Software Availability. All data needed to evaluate
the conclusions in the paper are present in the paper (SI Appendix and
Movies S1–S4). The related codes are uploaded to GitHub: https://github.com/
wqdsgsy/Odd_Mass_Density.
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