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domain {x = φ(X)}, the Lagrangian density reads

�(Vu, u̇) = 1
J

L(VuF, u̇) = Vu · cVu − u̇ · ρu̇
2

, (2.2)

where F = ∂x/∂X is the transformation gradient, J its determinant and the BGM gauge enforcing
the equality between original and transformed displacements, namely u(x) = U(X), has been
adopted. The transformed elasticity tensor c and mass density ρ can be extracted and read

cijkl = FjmFlnCimkn

J
, ρ = R

J
. (2.3)

Therein, it can be readily checked that when C has the minor symmetries, c does not. That is,
Cijkl = Cjikl = Cijlk does not imply a similar relation for c. Consequently, the stress σ that reigns in
{x} in the presence of a displacement gradient e = Vu is given by

σ = ce or σij = cijklekl (2.4)

and is asymmetric in general: σij �= σji.
For our cloaking purposes, we take {x} to be a two-dimensional elastic medium composed

of three regions (figure 1c). The central region {‖x‖< ri} is an inclusion with arbitrary elasticity
tensor c(x). The outer region {‖x‖> rc} is the background medium, assumed isotropic with a Lamé
pair (λ,μ) and mass density R. The remaining ring {ri < ‖x‖< rc} is an axisymmetric coating of
thickness rc − ri fulfilling the function of a cloak. Its constitutive relation is determined thanks
to equation (2.3) once φ has been specified to the blow-up transformation of figure 1. Following
Brun et al. [12], that relation reads

⎡
⎢⎢⎢⎣
σ11
σ22
σ12
σ21

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

(2μ+ λ)f λo 0 0

λ
(2μ+ λ)

f
0 0

0 0
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μ
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⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

e11
e22
e12
e21

⎤
⎥⎥⎥⎦ , f = ‖x‖ − ri

‖x‖ , (2.5)

where components have been calculated in the normalized polar basis (m, n) with m = x/‖x‖.
Finally, the mass density of the cloak is

ρ = r2
c

(rc − ri)2 fR. (2.6)

The major obstacle facing elastic cloaking is to design elastic materials whose behaviour is
described by the two foregoing relations (2.5) and (2.6).

(b) Design heuristics: why degenerate polar lattices are necessary
There are three insights that can guide our efforts in designing cloaking materials. These are
presented and discussed next.

The first insight is that a material where the minor symmetries are broken is necessarily a polar
material, i.e. a material that elastically resists rotations. At the same time, a polar material is a
material submitted to a distribution of restoring body torques. To see that, let c be an elasticity
tensor lacking the minor symmetries, e.g. with c1212 �= c1221. Then let u describe an infinitesimal
plane rotation of angle θ . Accordingly, the displacement gradient e is skewsymmetric with
e11 = e22 = 0 and e21 = −e12 = θ . In that case, the shear stresses σ12 = (c1221 − c1212)θ and σ21 =
(c2121 − c2112)θ are non-zero meaning that the material is indeed polar. Furthermore, the difference
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between the shear stresses σ12 − σ21 = (2c1221 − c1212 − c2121)θ is also non-zero and directly
quantifies the restoring body torques that emerge as a response to a rotation by an angle θ .

The second insight is rank conservation: seen as linear maps, C and c have the same rank
d(d + 1)/2 in dimension d. Therefore, they have an equal number of zero modes, namely d(d −
1)/2. That is, for each tensor E such that CE = 0, there exists a tensor e = EF−1 such that ce = 0. If
the original material is a classical one, then the only zero modes it admits are rotations meaning
that all the Es are skewsymmetric. But then, owing to the multiplication by F−1, e is no longer
skewsymmetric. That is, the transformed material admits zero modes that are not rotations; it
is degenerate. Therefore, the cloak’s material must exhibit a high volume fractions of void, as in
foams or lattice materials, so as to stretch or shear under zero stress. In the present case with
d = 2, c is of rank 3 and admits a unique zero mode. This can be checked through relation (2.5).
As a matter of fact, ezm = f m ⊗ n − n ⊗ m satisfies cezm = 0.

The third and last insight is particular to isotropic backgrounds. It consists in observing that
the principal directions of F yield planes of mirror symmetry.

In conclusion, with an isotropic background in two dimensions, it is necessary that our lattice
design of an elastic cloak (i) feature distributed restoring body torques, (ii) collapse effortlessly
under ezm and (iii) be rectangular so as to exhibit two orthogonal planes of symmetry.

(c) A degenerate polar lattice cloak
Following the guidelines described above, we fill the coating ring {ri < ‖x‖< rc} with an
inhomogeneous lattice as shown in figure 2a. A magnified local view of the lattice is depicted in
figure 2b. The lattice is rectangular with a unit cell containing two diagonal springs of constant α
and one vertical spring of constant β. Furthermore, a unit cell contains a single mass m submitted
to a restoring torque per radian per unit cell area κ as illustrated in figure 2c. Finally, all contacts
are assumed to be hinge-like.

Now we focus on the local elastic response of the lattice in the vicinity of position x. Call ε
the elastic energy per unit cell area under a uniform displacement gradient e of the lattice and a
uniform twisting of the masses by an angle ψ . Energy ε is composed of three terms

ε = εα + εβ + εκ (2.7)

corresponding to the energy stored in the springs of constant α, the spring of constant β and in
the grounded torsion spring of constant κ , respectively. These admit the expressions

εα = α

2v
[(er1 + 2dψm) · mθ ]2 + α

2v
[(er2 + 2dψm) · m′

θ ]2

and εβ = β

2v
(er3 · n)2, εκ = κ

2
ψ2,

⎫⎪⎬
⎪⎭ (2.8)

where v = ab/2 is the unit cell area, d = (bc − as)/(4c) is half the length of a mass, r1 = am/2 + bn/2,
r2 = −am/2 + bn/2 and r3 = −bn are lattice vectors, and where mθ = cm + sn and m′

θ = −cm + sn
are unit vectors with c ≡ cos θ and s ≡ sin θ .

At equilibrium, ψ is such that ε is at its minimum characterized by

∂ε

∂ψ
= 0, (2.9)

or equivalently,

2cdα(er1 · mθ + 2cdψ) − 2cdα(er2 · m′
θ − 2cdψ) + vκψ = 0. (2.10)

This leads to a new expression of ε as a function of e alone and where ψ can be expressed as

ψ = −2cdα
ase21 + bce12

8c2d2α + vκ
. (2.11)
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Figure 2. A two-dimensional lattice elastic cloak. (a) Cloak geometry: the inclusion is a void coated by a lattice and embedded
in an isotropic background; the bonds of the lattice are not depicted. (b) Local lattice geometry at position x: rectangles are
rigid masses submitted to a restoring torque; edges are springs; all contacts are hinge-like. (c) A mechanism by which restoring
torques can be applied. (d) The configuration of the lattice under the action of the zero mode ezm. (Online version in colour.)

The lattice’s Hooke’s Law σ = ∂ε/∂e follows immediately and reads

⎡
⎢⎢⎢⎣
σ11
σ22
σ12
σ21

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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b
csα 0 0
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b(αs2 + 2β)

a
0 0

0 0
b2c2ακ
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0 0
abcsακ

α(bc − as)2 + abκ
a2s2ακ

α(bc − as)2 + abκ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

e11
e22
e12
e21

⎤
⎥⎥⎥⎦ . (2.12)
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Last, it is worth mentioning that the suggested lattice is polar as it features an asymmetric stress
and is degenerate as it admits a zero mode of the form ezm = (as/bc)m ⊗ n − n ⊗ m. The action of
the zero mode on the lattice is exemplified in figure 2d.

(d) Parameters identification
A straightforward comparison between the lattice’s Hooke’s Law (2.12) and that of
the cloak (2.5) reveals that they match if the parameters (α,β, κ , θ , a/b) are chosen to
satisfy

f = as
bc

, λ= csα, μ= abcsακ
α(bc − as)2 + abκ

, (2.13)

but also

2
μ

λ
+ 1 = c2

s2 = s2 + 2β/α
c2 = 2abκ

α(bc − as)2 + abκ
+ 1. (2.14)

Solving these relations yields the local design parameters of a lattice fulfilling the function of a
cloak, namely

κ = λμ

λ− μ

(1 − f )2

f
,

θ = arctan

√
λ

2μ+ λ
∈ (0,π/2),

α = 2(μ+ λ)

√
λ

2μ+ λ
,

β = (2μ+ λ)2 − λ2

2
√
λ
√

2μ+ λ
> 0

and
a
b

= f

√
2μ+ λ

λ
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)

As for mass, it is given by

m = ab
2
ρ. (2.16)

Note that the suggested design maintains the parameters θ , α and β uniform throughout the cloak
whereas parameters κ , a/b and m depend on position x through f . Note also that enforcing stability
by rejecting torsion springs with a negative constant κ implies μ≤ λ and places a constraint on the
isotropic backgrounds for which a lattice cloak can be designed in this manner. A generalization
of our design, that would work for arbitrary anisotropic backgrounds in three dimensions, is
presented in the next section.

For the example treated next, we set λ=μ for simplicity. Thus, the design parameters
simplify into

κ → ∞, θ = π

6
, α= β = 4μ√

3
,

a
b

= f
√

3. (2.17)
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(a) (c) (d)(b)

(e) ( f ) (g) (h)

Figure 3. Normalized divergence (a–d) and curl (e–h) of the displacement field as colour maps for an incident 40 kHz plane
pressure wave. Ideal cloaking should show zero curl out of the cloak’s domain: residual curl can be interpreted as an error
measure. Plots (a,e) correspond to the intact background medium; (b,f ) to a non-coated void; (c,g) to a lattice-coated void;
and (d,h) to a continuously coated void. (Online version in colour.)

In particular, κ is infinite and mass rotation is completely blocked. Then, letting N be the number
of angular sectors in the coating, it comes that

b = 2π‖x‖
N

, a = 2π
√

3
‖x‖ − ri

N
, m = 2π2

√
3

N2 r2
c

(‖x‖ − ri

rc − ri

)2
R. (2.18)

As for the number of layers M, it is infinite in theory so as to permit ‖x‖ to reach the inner
radius ri. In practice, M is chosen large and ‖x‖ reaches a minimum r′

i > ri. Cloaking is, therefore,
approximate in practice but becomes ideal in the theoretical limit M, N → ∞ as r′

i → ri.

(e) Cloaking simulations
In the following numerical simulations, the plane stress hypothesis was adopted. We cloak a void
of radius r′

i = 55 mm with a coating of radius rc = 150 mm embedded in a rectangular plate of
1mm thickness and of inplane Lamé parameters λ=μ= 2.5 × 106 Pa × m and mass density R =
2.7 kg m−2 (figure 2a). The lattice cloak consists of M = 22 layers and N = 75 sectors and has a
theoretical inner radius of ri = 50 mm. Navier’s equations in the background medium coupled to
Newton’s equations in the coating were solved using the finite-element method and with the help
of the commercial software COMSOL Multiphysics. Each mass in the cloak’s domain is modelled
as a solid medium of sufficiently large modulus. Furthermore, its nodes are constrained to have
equal displacements so as to block rotations. Last, springs are modelled as pairs of point forces
depending on nodal displacements.
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(a) (c) (d)(b)

(e) ( f ) (g) (h)

Figure 4. Normalized divergence (a–d) and curl (e–h) of the displacement field as colour maps for an incident 22 kHz plane
shear wave. Ideal cloaking should show zero divergence out of the cloak’s domain: residual divergence can be interpreted as
an error measure. Plots (a,e) correspond to the intact background medium; (b,f ) to a non-coated void; (c,g) to a lattice-coated
void; and (d,h) to a continuously coated void. (Online version in colour.)

Given linearity and isotropy, it is sufficient to characterize the cloak’s behaviour in three
configurations: under an incident plane harmonic pressure wave, under an incident plane
harmonic shear wave and under uniaxial static compression. In the dynamic regime, incident
waves with Gaussian profiles are emitted from the left boundary of the simulation domain
and perfectly matched layers are appended to all sides so as to eliminate reflections. Note
that reflections would not jeopardize the cloak’s performance but constitute a nuisance for the
interpretation of the results. In the static regime, uniform normal displacements are applied to the
left and right boundaries while leaving the top and bottom boundaries free of normal stresses.

Results are shown in figures 3–5 for an incident pressure wave, incident shear wave and
for unidirectional compression, respectively. For reference, we carried out the same simulations
where the background medium is intact (plots a and e); where the void is non-coated (b and f );
where the void is lattice-coated (c and g); and in the homogenization limit where the discrete
cloak is substituted by a fictitious continuous material of the same behaviour (d and h). Therein,
the real part of the divergence and curl of the displacement field is shown as a colour map
over continuous domains but is not available over discrete regions a priori and these are left
uncoloured. Most importantly, beyond the cloak’s domain, whenever the divergence or the curl
component is dominant over the other, the secondary component can be interpreted as an error
or a scattering measure.

Comparing plots (b,f ) to (c,g), respectively, it is seen that the lattice cloak manages to
suppress the scattering, or strain localization, by or around the void to a high and satisfactory
degree although without being perfect. The cloaking error, e.g. the residual scattering, has two
sources: first, by comparing plots (c,g) to (d,h), it is seen that the lattice is not operating yet
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(a) (c) (d)(b)

(e) ( f ) (g) (h)

Figure 5. Normalized divergence (a–d) and curl (e–h) of the displacement field as colour maps under horizontal compression.
Ideal cloaking should show zero curl out of the cloak’s domain: residual curl can be interpreted as an error measure. Plots
(a,e) correspond to the intact background medium; (b,f ) to a non-coated void; (c,g) to a lattice-coated void; and (d,h) to a
continuously coated void. (Online version in colour.)

no void (target)

0 400 800 0 400 800

x (mm) x (mm)

lattice-based cloak fictitious cloak background coating inclusion

R
e 

( 
  .

 u
)

R
e 

( 
  ×

 u
)

(b)(a)

Figure 6. Normalized divergence (a) and curl (b) of the displacement field as a function of position x along the midspan of
the simulation domain, respectively, for the configurations of figure 3a,c,d and for the configurations of figure 4a,c,d. (Online
version in colour.)

in the homogenization limit; second, by comparing plots (a,e) to (d,h), it is seen that even the
homogenization limit does not show perfect cloaking due to the inner radius r′

i being slightly
larger than the theoretical value ri. The remedy to both sources of error is an increase in the
number of layers and sectors N and M. This analysis is further confirmed by the fact that the
performance of the cloak is visibly better in statics than in dynamics, that is when wavelengths
are larger compared to the unit cell parameters.

To consolidate our results quantitatively, the fields in figure 3a,c,d are plotted against position
x along the midspan of the simulation domain. The normalized profiles are depicted in figure 6a.
It is seen that over the background medium, all three profiles match well overall. Remarkably, the
most significant surge of error occurs at the boundary of the cloak at x = 250 mm but then dies
exponentially fast as x moves into the bulk of the background. Consequently, at that interface,
where the discrete domain of the lattice cloak meets the continuous domain of the background,
evanescent fields emerge. These are similar to the evanescent fields that appear in a halfspace as
a result to a point force being applied to its free boundary. As M and N grow, the number of point
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forces applied to the background increases and the spacing between their points of application
decreases. In the limit M, N → ∞, the point forces converge toward a smoothly distributed load
and the parasitic evanescent fields disappear as a result; only then our lattice cloak becomes
perfect. Figure 6b shows the normalized profile of the fields of figure 4e,c,d as a function of x.
Similar observations hold in that case.

3. A generalization to anisotropic backgrounds in three dimensions
The lattice cloak of the previous section is specific to two-dimensional isotropic backgrounds.
Furthermore, if only positive torsion spring constants κ are permitted, then the background must
satisfy μ≤ λ. Here, we prove that lattice designs of cloaks exist in three dimensions for arbitrary
anisotropic backgrounds. More generally, we construct lattice materials whose behaviour is form-
invariant under the BGM gauge. The proof closely follows Milton & Cherkaev’s [28] construction
of arbitrary elastic solids as mixtures of pentamode materials. First, the approach is motivated
thanks to a spectral decomposition of the elasticity tensor. Second, we modify Milton and
Cherkaev’s pentamodes so as to enable access to elasticity tensors without the minor symmetries.
These modified pentamodes are lattice materials that can support a unique stress state, be it
symmetric or not, and are renamed ‘rank-1 materials’. Finally, we conclude that mixtures of rank-1
materials can exhibit any elasticity tensor with or without the minor symmetries.

(a) Spectral decomposition and definitions
Once transformed, the elasticity tensor c loses the minor symmetries. Fortunately, c still has major
symmetry and remains non-negative. Hence, it can be decomposed into a sum of projectors

c =
d2∑

s=1

cs =
d2∑

s=1

μsτ s ⊗ τ s, (3.1)

where the μs are non-negative elastic moduli and the τ s are orthonormal eigentensors such that
cτ s =μsτ s and τ s · τ s′ = δss′ . Note that since c does not obey the minor symmetries, there exists at
least one asymmetric τ s. Conversely, if all τ s are symmetric, then c has the minor symmetries.

A material whose elasticity tensor is equal to one of the cs is called a rank-1 material. Such a
material can support a unique stress state proportional to τ s and collapses effortlessly under any
gradient e that is orthogonal to τ s. As a matter of fact, τ s · e = 0 implies cse = 0. More generally,
a rank-n material is one capable of supporting exactly n linearly independent stress states while
collapsing under all gradients orthogonal to these states. Note that a material is of rank n if and
only if its elasticity tensor c is of rank n when seen as a linear map over the space of second-order
tensors.

With this definition, recall that a classical elastic solid in dimension d is of rank d(d + 1)/2
since it supports d traction/compression states and d(d − 1)/2 shear states while ‘collapsing’
under d(d − 1)/2 rotations. As changes of coordinates preserve ranks, the possibility for a full
theory of transformation elasticity under the BGM gauge hinges on designing arbitrary non-
negative elasticity tensors of rank d(d + 1)/2 with major symmetry and with or without the minor
symmetries.

Hereafter, we closely follow Milton and Cherkaev and design a material with elasticity tensor
c in two steps. First, we build rank-1 materials whose elasticity tensors are equal to the individual
cs. Second, we mix these building blocks into a single material whose elasticity tensor is equal to c.

(b) Design of rank-1 materials
Consider the lattice whose unit cell is depicted in figure 7. A unit cell is composed of a single
rigid mass placed at the origin of the coordinate system and connected to d + 1 vertices placed
at the tips of vectors rj. The connections are spring-like with constants kj and are directed along
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r3

r1r0

r2

Figure 7. The unit cell of a rank-1 material: black arrows are lattice vectors; vectors rj are in grey; vectors sj (not shown) are
directed along the coils; all contacts (coil–coil and coil-sphere) behave like hinges; coils behave like linear springs; spheres have
a fixed absolute orientation but are free to translate. When the rj are parallel to the coils, the lattice becomes equivalent to a
Milton and Cherkaev’s pentamode. The inset shows a two-dimensional representation of the lattice. (Online version in colour.)

the unitary vectors sj; note that the sj and rj are not necessarily aligned. A mass originally has
d(d + 1)/2 degrees of freedom corresponding to rigid body motions. However, we assume each
mass to be submitted to d(d − 1)/2 restoring torques sufficiently strong to block rotations while
leaving free the d degrees of freedom of translational motion. Accordingly, the elastic energy
density within one unit cell of volume v submitted to a displacement gradient e is

ε = 1
2v

d∑
j=0

kj[sj · (erj − δ)]2, (3.2)

where erj is the imposed displacement of vertex j and δ is the displacement of the mass. Hence,
sj · (erj − δ) is the elongation of spring j and the expression of ε follows. At equilibrium, δ is such
that ε is equal to its minimum characterized by

∂ε

∂δ
= 0, (3.3)

or equivalently
d∑

j=0

kj[sj · (erj − δ)]sj = 0. (3.4)

The sj being d + 1 vectors in d dimensions, there exist scalars xj, j = 0 . . . d, such that

d∑
j=0

xjsj = 0. (3.5)

Comparing (3.4) and (3.5), it comes that

kjsj · (erj − δ) = γ xj, (3.6)

where γ is a j-independent similarity ratio. Multiplying by xj/kj and summing over j then yields

d∑
j=0

xjsj · erj = γ

d∑
k=0

x2
j

kj
(3.7)
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or

γ = τ lat · e∑d
k=0 x2

j /kj
; τ lat =

d∑
j=0

xjsj ⊗ rj. (3.8)

Now, combining (3.2), (3.6) and (3.8), we deduce that the elastic energy in fact depends on a
unique scalar, namely τ lat · e, through

ε = (τ lat · e)2

2v
∑

j x2
j /kj

. (3.9)

The lattice is, therefore, clearly of rank 1: for any strain e orthogonal to tensor τ lat, the scalar
product τ lat · e vanishes and so does ε. Conversely, the unique stress state that the lattice is capable
of supporting is given by tensor τ lat. This can also be seen by deriving the expression of the
effective elasticity tensor. We find

clat = ∂2ε

∂e∂e
= 1

v
∑

j x2
j /kj

τ lat ⊗ τ lat (3.10)

is a dyadic product and is of rank 1.
In conclusion of this subsection, as long as the vectors rj and sj are misaligned, the stress τ lat

will be asymmetric and clat will lack the minor symmetries. When the rj and the sj are aligned,
the rank-1 material becomes identical to a Milton and Cherkaev’s pentamode. In any case, by
appropriately choosing vectors rj and sj, it is possible to target any single eigentensor τ s and
subsequently any single elasticity tensor cs. We refer to Milton and Cherkaev’s original paper for
more details regarding this assertion.

(c) Design of rank-nmaterials
Now take two weakly interacting interpenetrated lattices with elasticity tensors cs and cs′ .
Applying a displacement gradient e will generate an energyμs,s′ (τ s,s′ · e)2/2 in the first and second
lattice, respectively. Accordingly, the elasticity tensor of the mixture is simply cs + cs′ . Iterating
the process and mixing up to d2 lattices, all non-negative elasticity tensors c satisfying major
symmetry can be generated. This concludes our proof that the set of elastic materials submitted
to restoring torques is invariant by transformations under the BGM gauge.

4. Conclusion
In conclusion, full transformation elasticity and cloaking, in particular, have been proved possible
in principle thanks to a class of degenerate polar lattices that elastically resist rotations while
admitting a set of collapse mechanisms. In two dimensions, the proposed lattice exhibits a rank-3
elasticity tensor lacking the minor symmetries as required by the transformation method under
the BGM gauge. The lattice cloak was numerically tested under various static and dynamic
loadings and showed satisfactory performance.

Experimental demonstrations are much desired but face two challenges. The first is to devise a
practical way of imposing the required torques. The second is to reduce the number of sectors and
layers in the cloak as much as possible. This would contradict the homogenization limit however
and an optimal trade-off is to be found. In doing so, it could be beneficial to investigate better
ways to connect the background continuum to the discrete domain of the cloak and to take into
account the jumps occurring at that interface so as to eliminate any parasitic evanescent fields.
As for the restoring torques, they can be applied in practice thanks to grounded torsion springs.
If external intervention is prohibited or deemed disadvantageous, effective restoring torques can
be dynamically applied by embedding a rotational resonator within each mass. In that case, our
results must be restated as they become valid at single non-zero frequencies in the harmonic
regime, thus excluding statics. Future efforts tackling these issues are most welcome.

 on November 24, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


14

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180523

...................................................

Data accessibility. The paper has no experimental data.
Authors’ contributions. H.N. and G.L.H. conceived the concept and model. H.N. designed the lattices and derived
the governing equations. Y.Y.C. built the numerical model and performed the simulations. G.L.H. interpreted
the results and supervised the research. All authors gave final approval for publication.
Competing interests. The authors have no competing interests.
Funding. This work is supported by the Army Research office under grant no. W911NF-18-1-0031 with Program
Manager Dr David M. Stepp.

References
1. Hu J, Zhou X, Hu G. 2009 Design method for electromagnetic cloak with arbitrary shapes

based on Laplace’s equation. Opt. Express 17, 1308–1320. (doi:10.1364/OE.17.001308)
2. Greenleaf A, Lassas M, Uhlmann G. 2003 Anisotropic conductivities that cannot be detected

by EIT. Physiol. Meas. 24, 413–419. (doi:10.1088/0967-3334/24/2/353)
3. Greenleaf A, Lassas M, Uhlmann G. 2003 On nonuniqueness for Calderón’s inverse problem.

Math. Res. Lett. 10, 685–693. (doi:10.4310/MRL.2003.v10.n5.a11)
4. Leonhardt U. 2006 Optical conformal mapping. Science 312, 1777–1780. (doi:10.1126/science.

1126493)
5. Pendry JB, Schurig D, Smith DR. 2006 Controlling electromagnetic fields. Science 312,

1780–1782. (doi:10.1126/science.1125907)
6. Cummer SA, Schurig D. 2007 One path to acoustic cloaking. New J. Phys. 9, 45. (doi:10.1088/

1367-2630/9/3/045)
7. Chen H, Chan CT. 2007 Acoustic cloaking in three dimensions using acoustic metamaterials.

Appl. Phys. Lett. 91, 183518. (doi:10.1063/1.2803315)
8. Norris AN. 2015 Acoustic cloaking. Acoust. Today 11, 38–46.
9. Norris AN. 2008 Acoustic cloaking theory. Proc. R. Soc. A 464, 2411–2434. (doi:10.1098/

rspa.2008.0076)
10. Smith JD. 2011 Application of the method of asymptotic homogenization to an acoustic

metafluid. Proc. R. Soc. A 467, 3318–3331. (doi:10.1098/rspa.2011.0231)
11. Milton GW, Briane M, Willis JR. 2006 On cloaking for elasticity and physical equations with a

transformation invariant form. New J. Phys. 8, 248–267. (doi:10.1088/1367-2630/8/10/248)
12. Brun M, Guenneau S, Movchan AB. 2009 Achieving control of in-plane elastic waves. Appl.

Phys. Lett. 94, 061903. (doi:10.1063/1.3068491)
13. Diatta A, Guenneau S. 2014 Controlling solid elastic waves with spherical cloaks. Appl. Phys.

Lett. 105, 021901. (doi:10.1063/1.4887454)
14. Norris AN, Shuvalov AL. 2011 Elastic cloaking theory. Wave Motion 48, 525–538.

(doi:10.1016/j.wavemoti.2011.03.002)
15. Farhat M, Guenneau S, Enoch S. 2009 Ultrabroadband elastic cloaking in thin plates. Phys. Rev.

Lett. 103, 024301. (doi:10.1103/PhysRevLett.103.024301)
16. Farhat M, Guenneau S, Enoch S, Movchan AB. 2009 Cloaking bending waves propagating

in thin elastic plates. Phys. Rev. B - Condens. Matter Mater. Phys. 79, 033102. (doi:10.1103/
PhysRevB.79.033102)

17. Farhat M, Guenneau S, Enoch S. 2012 Broadband cloaking of bending waves via
homogenization of multiply perforated radially symmetric and isotropic thin elastic plates.
Phys. Rev. B - Condens. Matter Mater. Phys. 85, 020301. (doi:10.1103/PhysRevB.85.020301)

18. Stenger N, Wilhelm M, Wegener M. 2012 Experiments on elastic cloaking in thin plates. Phys.
Rev. Lett. 108, 014301. (doi:10.1103/PhysRevLett.108.014301)

19. Brun M, Colquitt DJ, Jones IS, Movchan AB, Movchan NV. 2014 Transformation cloaking
and radial approximations for flexural waves in elastic plates. New J. Phys. 16, 093020.
(doi:10.1088/1367-2630/16/9/093020)

20. Colquitt DJ, Brun M, Gei M, Movchan AB, Movchan NV, Jones IS. 2014 Transformation
elastodynamics and cloaking for flexural waves. J. Mech. Phys. Solids 72, 131–143.
(doi:10.1016/j.jmps.2014.07.014)

21. Chen YY, Hu J, Huang GL. 2016 A design of active elastic metamaterials for control of
flexural waves using the transformation method. J. Intell. Mater. Syst. Struct. 27, 1337–1347.
(doi:10.1177/1045389X15590273)

22. Parnell WJ, Norris AN, Shearer T. 2012 Employing pre-stress to generate finite cloaks for
antiplane elastic waves. Appl. Phys. Lett. 100, 171907. (doi:10.1063/1.4704566)

 on November 24, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1364/OE.17.001308
http://dx.doi.org/doi:10.1088/0967-3334/24/2/353
http://dx.doi.org/doi:10.4310/MRL.2003.v10.n5.a11
http://dx.doi.org/doi:10.1126/science.1126493
http://dx.doi.org/doi:10.1126/science.1126493
http://dx.doi.org/doi:10.1126/science.1125907
http://dx.doi.org/doi:10.1088/1367-2630/9/3/045
http://dx.doi.org/doi:10.1088/1367-2630/9/3/045
http://dx.doi.org/doi:10.1063/1.2803315
http://dx.doi.org/doi:10.1098/rspa.2008.0076
http://dx.doi.org/doi:10.1098/rspa.2008.0076
http://dx.doi.org/doi:10.1098/rspa.2011.0231
http://dx.doi.org/doi:10.1088/1367-2630/8/10/248
http://dx.doi.org/doi:10.1063/1.3068491
http://dx.doi.org/doi:10.1063/1.4887454
http://dx.doi.org/doi:10.1016/j.wavemoti.2011.03.002
http://dx.doi.org/doi:10.1103/PhysRevLett.103.024301
http://dx.doi.org/doi:10.1103/PhysRevB.79.033102
http://dx.doi.org/doi:10.1103/PhysRevB.79.033102
http://dx.doi.org/doi:10.1103/PhysRevB.85.020301
http://dx.doi.org/doi:10.1103/PhysRevLett.108.014301
http://dx.doi.org/doi:10.1088/1367-2630/16/9/093020
http://dx.doi.org/doi:10.1016/j.jmps.2014.07.014
http://dx.doi.org/doi:10.1177/1045389X15590273
http://dx.doi.org/doi:10.1063/1.4704566
http://rspa.royalsocietypublishing.org/


15

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180523

...................................................

23. Parnell WJ. 2012 Nonlinear pre-stress for cloaking from antiplane elastic waves. Proc. R. Soc.
A 468, 563–580. (doi:10.1098/rspa.2011.0477)

24. Norris AN, Parnell WJ. 2012 Hyperelastic cloaking theory : transformation elasticity with pre-
stressed solids. Proc. R. Soc. A 468, 2881–2903. (doi:10.1098/rspa.2012.0123)

25. Bückmann T, Kadic M, Schittny R, Wegener M. 2015 Mechanical cloak design by direct lattice
transformation. Proc. Natl Acad. Sci. USA 112, 4930–4934. (doi:10.1073/pnas.1501240112)

26. Sklan SR, Pak R, Li B. 2018 Seismic invisibility: elastic wave cloaking via symmetrized
transformation media. New J. Phys. 20, 063013. (doi:10.1088/1367-2630/aac7ab)

27. Milton GW. 2002 The theory of composites. Cambridge, UK: Cambridge University Press.
28. Milton GW, Cherkaev AV. 1995 Which elasticity tensors are realizable? J. Eng. Mater. Technol.

117, 483–493. (doi:10.1115/1.2804743)
29. Guevara Vasquez F, Milton GW, Onofrei D, Seppecher P. 2012 Transformation elastodynamics

and active exterior acoustic cloaking. In Acoustic metamaterials: negative refraction, imaging,
lensing and cloaking (eds RV Craster, S Guenneau), pp. 289–318. Springer Series in Materials
Science. Dordrecht, The Netherlands: Springer.

 on November 24, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1098/rspa.2011.0477
http://dx.doi.org/doi:10.1098/rspa.2012.0123
http://dx.doi.org/doi:10.1073/pnas.1501240112
http://dx.doi.org/doi:10.1088/1367-2630/aac7ab
http://dx.doi.org/doi:10.1115/1.2804743
http://rspa.royalsocietypublishing.org/

